科目: 来源: 题型:
【题目】如图,AB为的直径,点C和点G是上的两点,过点C作BG的垂线交BG的延长线于点D延长DC交A的延长线于点E,连接BC,交OD于点F,BC平分∠ABD.
(1)求证:CD是的切线;
(2)若,探索线段OF与FD的数量关系;
(3)连接AD,若,,求AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线与x轴交于A,B两点,与y轴交于点D,过点A的直线交抛物线于另一点C,点E为抛物线的顶点,连接CE,AE,设AE交y轴于点F,点A的坐标为,且,C、D两点关于对称轴对称.
(1)若,求抛物线的解析式;
(2)在(1)的条件下,试探究抛物线上是否存在一点M,使为以AC为直角边的直角三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)设点P是直线AE上方抛物线上的一动点,若的面积最大值为,求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,求证四边形FFG是平行四边形.根据以下思路可以证明四边形EFGH是平行四边形:
(1)根据上述思路,请你写出完整的证明过程;
(2)如图,已知,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BF.可通过证明△________≌△________,得到;
(3)如图③,点P是四边形ABCD内一点,且满足,,,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】问题发现
(1)如图1,和均为等边三角形,点D在边BC上,连接CE.求证:.
拓展探究
(2)如图2,和均为等腰直角三角形,,点D在边BC上,连接CE
ⅰ)求的度数;
ⅱ)请判断线段AC、CD、CE之间的数量关系,并说明理由.
解决问题
(3)如图3,在四边形ABCD中,,,,AC与BD交于点E,求出线段AC的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,CD⊥AB,垂足为D. 点E在BC上,EF⊥AB,垂足为F,∠1=∠2.
(1)试说明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有( )个.
A.2B.3C.4D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com