相关习题
 0  365311  365319  365325  365329  365335  365337  365341  365347  365349  365355  365361  365365  365367  365371  365377  365379  365385  365389  365391  365395  365397  365401  365403  365405  365406  365407  365409  365410  365411  365413  365415  365419  365421  365425  365427  365431  365437  365439  365445  365449  365451  365455  365461  365467  365469  365475  365479  365481  365487  365491  365497  365505  366461 

科目: 来源: 题型:

【题目】已知:抛物线yax23a1x+2a6a0).

1)求证:抛物线与x轴有两个交点.

2)设抛物线与x轴的两个交点的横坐标分别为x1x2(其中x1x2).若t是关于a的函数、且tax2x1,求这个函数的表达式;

3)若a1,将抛物线向上平移一个单位后与x轴交于点AB.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP1M是线段AC上一动点,求2MB+MC的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC在平面直角坐标系中,∠ACB90°,ACBCA的坐标是(0m)(m0),点C的坐标是(20),点Bx轴上方.

1)如图1所示,若点By轴上,则m的值是   

2)如图2所示,BCy轴交于点D

m=﹣6,求点B的坐标;

y轴恰好平分∠BAC,求OD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为提升青少年的身体素质,郑州市在全市中小学推行“阳光体育”活动,河南省实验中学为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足球,购买篮球的个数比足球的个数少2个,足球的单价为篮球单价的

1)求篮球、足球的单价分别为多少元?

2)学校计划用不多于5200元购买篮球、足球共60个,那么至少购买多少个足球?

3)在(2)的条件下,若篮球数量不能低过15个,那么有多少种购买方案?哪种方案费用最少?最少费用是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,ABAC,以AB为直径的圆OBC于点D,交AC于点E,过点DDFAC于点F,交AB的延长线于点G

1)求证:DFO的切线;

2)已知BDCF2,求DFBG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,将矩形ABCD折叠,使点C与点A重合,点D落在点G处,折痕为EF

1)如图1,求证:BEGF

2)如图2,连接CFDG,若CE2BE,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形都为等腰三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:

学校这次调查共抽取了 名学生;

的值并补全条形统计图;

在扇形统计图中,围棋所在扇形的圆心角度数为

设该校共有学生名,请你估计该校有多少名学生喜欢足球.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A,点C在反比例函数yk0x0)的图象上,ABx轴于点BOCAB于点D,若CDOD,则AODBCD的面积比为__

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD2AB=2BC=CD=10tanB=,则AD=______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA12m,宽OC4m.按照图中所示的平面直角坐标系,抛物线可以用y=x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是(  )

A.2mB.4mC.mD.m

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,抛物线y=﹣x2+mx+nx轴于点A﹣20)和点B,交y轴于点C02).

1)求抛物线的函数表达式;

2)若点M在抛物线上,且SAOM=2SBOC,求点M的坐标;

3)如图2,设点N是线段AC上的一动点,作DNx轴,交抛物线于点D,求线段DN长度的最大值.

查看答案和解析>>

同步练习册答案