相关习题
 0  365332  365340  365346  365350  365356  365358  365362  365368  365370  365376  365382  365386  365388  365392  365398  365400  365406  365410  365412  365416  365418  365422  365424  365426  365427  365428  365430  365431  365432  365434  365436  365440  365442  365446  365448  365452  365458  365460  365466  365470  365472  365476  365482  365488  365490  365496  365500  365502  365508  365512  365518  365526  366461 

科目: 来源: 题型:

【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点CD(如图).

1)求证:AC=BD

2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1234.随机摸取一个小球然后放回,再随机摸出一个小球,请用树状图或列表法求下列事件的概率.

1)两次取出的小球的标号相同;

2)两次取出的小球标号的和等于6.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线yax2+bx+ca<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:

①4a+2b<0;

②﹣1≤a

对于任意实数ma+bam2+bm总成立;

关于x的方程ax2+bx+cn﹣1有两个不相等的实数根.

其中结论正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中的两个图形,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则

(1)如图(1),,⊙的半径为2,则         

(2)如图(2),已知的一边轴上,上,且

内一点,若分别且⊙EF,且,判断与⊙的位置关系,并求出点的坐标;

②若以为半径,①中的为圆心的⊙,有,直接写出的取值范围    .

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产并销售某种产品,整理出该商品在第()天的售价函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.

1)试求出售价之间的函数关系是;

2)请求出该商品在销售过程中的最大利润;

3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABO直径,ACO的切线,BCO于点D(如图1).

(1)若AB=2,∠B=30°,求CD的长;

(2) 取AC的中点E,连结DE(如图2),求证:DEO相切.

【答案】(1);(2)见解析

【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=ADB=90°,根据∠B=30°,解直角三角形求得的长度.

连接ODAD.根据DE=CE=EAEDA=EAD. 根据OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

详解:(1)如图,连接AD ,

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如图,连接ODAD.

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=ADC=90°,

又∵EAC中点,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA

∴∠ODA=DAO

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又点D在⊙O上,因此DE与⊙O相切.

点睛:考查解直角三角形,圆周角定理,切线的判定与性质等,属于圆的综合题,比较基础.注意切线的证明方法,是高频考点.

型】解答
束】
21

【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.

(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;

(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数的图象如图所示,根据图象解答下列问题:

1)写出方程的两个根;

2)若方程有两个不相等的实数根,求的取值范围;

3)若抛物线与直线相交于两点,写出抛物线在直线下方时的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,是⊙的直径,,点在⊙上,的延长线交于点,且,有以下结论:①;②劣弧的长为;③点的中点;④平分,以上结论一定正确的是______

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的好点”.如图1ABC中,点DBC边上一点,连结AD,若,则称点DABCBC边上的好点”.

1)如图2ABC的顶点是网格图的格点,请仅用直尺画出AB边上的一个好点”.

2ABC中,BC=9,点DBC边上的好点,求线段BD的长.

3)如图3ABC的内接三角形,OHAB于点H,连结CH并延长交于点D.

①求证:点HBCDCD边上的好点”.

②若的半径为9,∠ABD=90°OH=6,请直接写出的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABC是等边三角形,ADBC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EFCFAF

1)如图1,当点E在线段AD上时,猜想∠AFC和∠FAC的数量关系;(直接写出结果)

2)如图2,当点E在线段AD的延长线上时,(1)中的结论还成立吗?若成立,请证明你的结论,若不成立,请写出你的结论,并证明你的结论;

3)点E在直线AD上运动,当ACF是等腰直角三角形时,请直接写出∠EBC的度数.

查看答案和解析>>

同步练习册答案