科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OACD,求阴影部分的面积;
(2)求证:DEDM.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的一元二次方程有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数的图像与坐标轴交于A、B两点,点C的坐标为,二次函数的图像经过A、B、C三点.
(1)求二次函数的解析式
(2)如图1,已知点在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作轴于点M,作于点N,过Q作轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;
(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足,求点E的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处求证:;
(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当时,求的值;
(3)如图3,在中,,点D是AB边上的中点,在BC的下方作射线BE,使得,点P是射线BE上一个动点,当,求BP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元。经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:
售价x(万元/件) | 25 | 30 | 35 |
销售量y(件) | 50 | 40 | 30 |
(1)求y与x之间的函数表达式;
(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.
(1)利用图中条件,求反比例和一次函数的解析式;
(2)连接OB,OC,求△BOC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com