科目: 来源: 题型:
【题目】制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图),已知该材料初始温度是26 ℃.
(1)分别求出材料煅烧和锻造时y关于x的函数解析式,并写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于400℃时,须停止操作,那么锻造的操作时间有多长?
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了保护生态环境,某工厂在一段时间内限产并投入资金进行治污改造.如图描述的是月利润y(万元)和月份x之间的变化关系,治污改造完成前是反比例函数图象的一部分,治污改造完成后是一次函数图象的一部分,则下列说法不正确的是( )
A.5月份该厂的月利润最低
B.治污改造完成后,每月利润比前一个月增加30万元
C.治污改造前后,共有6个月的月利润不超过120万元
D.治污改造完成后的第8个月,该厂月利润达到300万元
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形为直角梯形, , ,.点从出发以每秒2个单位长度的速度向运动;点从同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点作垂直轴于点,连接交于,连接.
(1) 求的面积与运动时间的函数关系式, 并写出自变量的取值范围, 当为何值时,的值最大?
(2)是否存在点,使得为直角三角形?若存在,求出点的坐标,若不存在,说明理由.
(3) 当为以为底的等腰三角形时,求值.
(4) 是否存在这样的值,使直线将的周长和面积同时平分?若存在,求出值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点和直线,则点到直线的距离可用公式计算.
例如:求点 到直线的距离.
解:因为直线,其中.
所以点到直线的距离为.
根据以上材料,解答下列问题:
(1)点到直线的距离;
(2)已知的圆心的坐标为 ,半径为2,判断与直线的位置关系并说明理由;
(3)已知直线与平行,、是直线上的两点且,是直线上任意一点,求的面积.
(4)如图,直线与轴、轴分别交于、两点,把沿直线翻折后得到,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量(件)与销售单价(元)之间的函数关系如图所示.
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为(元),求每月获得利润(元)关于销售单价(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).
查看答案和解析>>
科目: 来源: 题型:
【题目】小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.
x | 1 |
|
|
| 3 | 4 | 5 | 6 | … |
y | ﹣1 | ﹣2 | ﹣3.4 | ﹣7.5 | 2.4 | 1.4 | 1 | 0.8 | … |
(1)函数y=的自变量x的取值范围是 ;
(2)在图中补全当1≤x<2的函数图象;
(3)观察图象,写出该函数的一条性质: ;
(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com