科目: 来源: 题型:
【题目】如图,点为平行四边形的边上一动点,过点作直线垂直于,且直线与平行四边形的另一边交于点.当点从匀速运动时,设点的运动时间为,的面积为,能大致反映与函数关系的图象是( )
A.B.
C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M、N(点 M 在点 N 的上方).
(1)求 A、B 两点的坐标;
(2)设 OMN 的面积为 S,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;
(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学在研究二次函数及其图像性质的问题时,发现了两个重要结论:
①抛物线 y = ax 2 2x + 3(a ≠0) ,不论 a 为何值时,它的顶点都在某条直线上;
②抛物线 y = ax 2 2x + 3(a ≠0),其顶点的横坐标减少,纵坐标增加得到A点,若把顶点的横坐标增加,纵坐标增加,得到B点,则A,B两点一定在抛物线y = ax 2 2x + 3上.
(1)请你帮忙求出抛物线 y = ax 2 2x + 3的顶点所在直线的解析式,并证明结论②是正确的;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗,并说明理由;
(3)你能把结论①或②(选择其中之一)推广到一般情况吗,请用数学语言表述你的成 果,并给予严格的证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,四边形 ABCD 内接于⊙ O ,AC 和 BD 相交于E , BC = CD = 4 , AE = 6 ,且 BE 和 DE 的长是正整数,求 BD 的 长.
查看答案和解析>>
科目: 来源: 题型:
【题目】设是的平均数,即,则方差,它反映了这组数的波动性,
(1)证明:对任意实数a,x1a,x2a,…,xna,与x1,x2,…,xn 方差相同;
(2)证明;
(3)以下是我校初三(1)班 10 位同学的身高(单位:厘米):
169,172,163,173,175,168,170,167,170,171,计算这组数的方差.
查看答案和解析>>
科目: 来源: 题型:
【题目】请你仔细观察下面一组图形,依据其变化规律推断第(5)个图形中所有正方形面积之和为____________(其中图 中出现的三角形均是直角三角形,四边形均是正方形).
查看答案和解析>>
科目: 来源: 题型:
【题目】若二次函数的图象与轴分别交于点、,且过点.
(1)求二次函数表达式;
(2)若点为抛物线上第一象限内的点,且,求点的坐标;
(3)在抛物线上(下方)是否存在点,使?若存在,求出点到轴的距离;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
∴≥,只有当a=b时,等号成立.
结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.
根据上述内容,回答下列问题:
若m>0,只有当m= 时,有最小值 .
思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.
试根据图形验证≥,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com