科目: 来源: 题型:
【题目】如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.
(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩
(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;
(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定商品以每件元出售,商品以每件元出售.为满足市场需求,需购进、两种商品共件,且商品的数量不少于种商品数量的倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.
(1)请探究AD与BD之间的位置关系并证明你的结论;
(2)若AC=BC=,DC=CE= ,求线段AD的长;
查看答案和解析>>
科目: 来源: 题型:
【题目】给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.
在平面直角坐标系xOy中,⊙O的半径为1.
(1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;
(2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
①∠MDN的大小为 ;
②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】正方形ABCD的边长为2,将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN.
(1)如图,当0°<α<45°时:
①依题意补全图;
②用等式表示∠NCE与∠BAM之间的数量关系:___________;
(2)当45°<α<90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;
(3)当0°<α<90°时,若边AD的中点为F,直接写出线段EF长的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.
(1)若a=1.
①当m=b时,求x1,x2的值;
②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;
(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为xcm,△APO的面积为ycm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;
(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表:
x/cm | 0.5 | 1 | 2 | 3 | 3.5 | 4 | 5 | 5.5 | 5.8 |
y/cm2 | 0.8 | 1.5 | 2.8 | 3.9 | 4.2 | m | 4.2 | 3.3 | 2.3 |
那么m= ;(保留一位小数)
(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.
(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为 .(保留一位小数)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据:按如下数据段整理、描述这两组数据
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
经统计,表格中m的值是 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .
b可以推断出 学校学生的数学水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com