相关习题
 0  365638  365646  365652  365656  365662  365664  365668  365674  365676  365682  365688  365692  365694  365698  365704  365706  365712  365716  365718  365722  365724  365728  365730  365732  365733  365734  365736  365737  365738  365740  365742  365746  365748  365752  365754  365758  365764  365766  365772  365776  365778  365782  365788  365794  365796  365802  365806  365808  365814  365818  365824  365832  366461 

科目: 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+cx轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求抛物线的解析式和直线AC的解析式;

(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;

(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】一前夕某幼儿园园长到厂家选购AB两种品牌的儿童服装每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍,求AB两种品牌服装每套进价分别为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y1=k1x+b(k1≠0)与反比例函数(k2≠0)的图象交于点A(41)B(n-2)两点.

(1)求一次函数与反比例函数的解析式.

(2)求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在半⊙O中,AB是直径,点D是⊙O上一点,点C的中点,CEAB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CECB于点PQ,连接AC,关于下列结论:①∠BAD=ABC;②GP=GD;③点P是△ACQ的外心;④AC2=CQCB,其中结论正确的是______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y = x2+bx+c过点A (-12),且关于y轴对称,点C与点B(a0)(a1)关于原点对称,直线AC交抛物线于点D

1)求此抛物线的解析式;

2)连接OABD,当OA//BD时,求a的值;

3)若直线AC交抛物线EF两点(E在点F的左侧),且EA=DF,求直线AC的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,延长COAB于点D,记∠A=,∠ABC=β.

1)求∠ADC的度数(用含α、β的式子表示)

2)过点CCEAB,垂足为E,过点BBFAC,垂足为FCEBF相交于点G,取中点H,连接GH.若α+β=120°,求证:①CG=CO;②GHCD

查看答案和解析>>

科目: 来源: 题型:

【题目】某商品的现在的售价为每件55元,每星期可卖出200件,如果每件商品的售价每上涨1元,则每星期少卖10件.已知商品进价为每件50元,进行涨价销售,每件售价是整数元,且不能高于70元.

1)每件商品的售价定为多少元时,每星期可获得利润最大?最大利润是多少元?

2)若在销售过程中每一件商品有m(m1)元的其他费用,商家发现当售价每件不低于65元时,每星期的销售利润随定价的增大而减小,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的盒子里装有若干个黑、白两种颜色球,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:

摸球的次数n

100

200

300

500

800

1000

3000

摸到白球的次数m

65

124

178

302

481

599

1803

摸到白球的频率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)若从盒子里随机摸出一个球,则摸到白球的概率估计值为     (精确到0.1)

2)若盒中黑球与白球若共有5个,小颖一次摸出两个球,请计算这两个球颜色不相同的概率,并说明理由.

查看答案和解析>>

同步练习册答案