相关习题
 0  365742  365750  365756  365760  365766  365768  365772  365778  365780  365786  365792  365796  365798  365802  365808  365810  365816  365820  365822  365826  365828  365832  365834  365836  365837  365838  365840  365841  365842  365844  365846  365850  365852  365856  365858  365862  365868  365870  365876  365880  365882  365886  365892  365898  365900  365906  365910  365912  365918  365922  365928  365936  366461 

科目: 来源: 题型:

【题目】如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE

1)求证:四边形BECD是矩形;

2)连接DEBC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是小东设计的过直线上一点作这条直线的垂线的尺规作图过程.

已知:直线l及直线l上一点P

求作:直线PQ,使得PQl

作法:如图,

①在直线l上取一点A(不与点P重合),分别以点PA为圆心,AP长为半径画弧,两弧在直线l的上方相交于点B

②作射线AB,以点B为圆心,AP长为半径画弧,交AB的延长线于点Q

③作直线PQ

所以直线PQ就是所求作的直线.

根据小东设计的尺规作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:连接BP

         AP

∴点APQ在以点B为圆心,AP长为半径的圆上.

∴∠APQ90°   ).(填写推理的依据)

PQl

查看答案和解析>>

科目: 来源: 题型:

【题目】世界上大部分国家都使用摄氏温度(),但美、英等国的天气预报仍然使用华氏温度(),两种计量之间有如下的对应表:

摄氏温度(

0

10

20

30

40

50

华氏温度(

32

50

68

86

104

122

由上表可以推断出,华氏0度对应的摄氏温度是_____,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司生产的一种产品按照质量由高到低分为ABCD四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:

根据以上信息,下列推断合理的是(  )

A.改进生产工艺后,A级产品的数量没有变化

B.改进生产工艺后,B级产品的数量增加了不到一倍

C.改进生产工艺后,C级产品的数量减少

D.改进生产工艺后,D级产品的数量减少

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线yax2+bx+3经过点A(﹣10)、B30)两点,且交y轴交于点C

1)求抛物线的解析式;

2)点M是线段BC上的点(不与BC重合),过MMNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长;

3)在(2)的条件下,连接NBNC,是否存在点M,使BNC的面积最大?若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】尝试探究:如图,在中,EF分别是BCAC上的点,且,则______

类比延伸:如图,若将图中的绕点C顺时针旋转,则在旋转的过程中,值是否发生变化?请仅就图的情形写出推理过程;

拓展运用:若,在旋转过程中,当BEF三点在同一直线上时,请直接写出此时线段AF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,双曲线和直线交于AB两点,点A的坐标为轴于点C,且

求双曲线和直线的解析式;

的面积.

直接写出不等式的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB的一条弦,点C上一动点,且,点EF分别是ACBC的中点,直线EF交于GH两点.若的半径为5,则的最大值为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,,分别以的边向外作正方形,连接ECBF,过BM,交ACN,下列结论:

,其中正确的是

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点倍相关圆.

例如,在如图1中,点1倍相关圆为以点为圆心,2为半径的圆.

1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.

2)如图2,若轴正半轴上的动点,点在第一象限内,且满足,判断直线与点倍相关圆的位置关系,并证明.

3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.

若点在直线上,则点3倍相关圆的半径为________.

在直线上,点倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.

查看答案和解析>>

同步练习册答案