科目: 来源: 题型:
【题目】如图,在河对岸有一棵大树 A,在河岸 B 点测得 A 在北偏东 60°方向上,向东前进 200m 到达 C 点,测得 A 在北偏东 30°方向上,求河的宽度(精确到 0.1m).参考数据 ≈1.414,≈1.732.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图 1,在矩形 ABCD 中,AB=8,AD=10,E 是 CD 边上一点,连接 AE,将矩形 ABCD 沿 AE 折叠,顶点 D 恰好落在 BC 边上点 F 处,延长 AE 交 BC 的延长线于点G.
(1)求线段 CE 的长;
(2)如图 2,M,N 分别是线段 AG,DG 上的动点(与端点不重合),且∠DMN=∠DAM, 设 DN=x.
①求证四边形 AFGD 为菱形;
②是否存在这样的点 N,使△DMN 是直角三角形?若存在,请求出 x 的值;若不存在, 请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第 x 天的成本 y(元/件)与 x(天)之间的关系如图所示,并连续 60 天均以 80 元/件的价格出售, 第 x 天该产品的销售量 z(件)与 x(天)满足关系式 z=x+15.
(1)第 25 天,该商家的成本是 元,获得的利润是 元;
(2)设第 x 天该商家出售该产品的利润为 w 元.
①求 w 与 x 之间的函数关系式;
②求出第几天的利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形 ABCD 中,AD=6,点 E 是对角线 AC 上一点,连接 DE,过点 E 作 EF⊥ ED,交 AB 于点 F,连接 DF,交 AC 于点 G,将△EFG 沿 EF 翻折,得到△EFM,连接DM,交 EF 于点 N,若点 F 是 AB 边的中点,则 △EDM 的面积是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数 y=a2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<0;④5a+b+c>0. 其中正确结论的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.
(1)求证:BF=CE;
(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a≠0)与y轴交于点A,将点A向右平移2个单位长度,得到点B.直线与x轴,y轴分别交于点C,D.
(1)求抛物线的对称轴.
(2)若点A与点D关于x轴对称.
①求点B的坐标.
②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).
(1)过点作于点,如果BE=2,,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y=(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.
(1)若点A(1,1),求线段AB和CD的长度;
(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com