科目: 来源: 题型:
【题目】如图,抛物线的图象与轴交于、两点(点在点的左边),与轴交于点,,点为抛物线的顶点.
(1)求抛物线的解析式;
(2)点为线段上一点(点不与点、重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点,可得矩形,如图1,点在点左边,当矩形的周长最大时,求的值,并求出此时的的面积;
(3)已知,点在抛物线上,连,直线,垂足为,若,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O是等边三角形ABC内的一点,∠AOB=130°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.
(1)判断△COD的形状,并加以说明理由.
(2)若AD=1,OC=,OA=时,求α的度数.
(3)探究:当α为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数图象的顶点在原点,经过点点在轴上,直线与轴交于点.
(1)求二次函数的解析式;
(2)点是抛物线上的点,过点作轴的垂线与直线交于点,求证:;
(3)当时等边三角形时,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.
(1)建立适当的平面直角坐标系,求抛物线的表达式;
(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,有长为的篱笆,现一面利用墙(墙的最大可用长度为)围成中间隔有一道篱笆的长方形花圃,设花圃的宽为,面积为.
(1)求与的函数关系式及自变量的取值范围;
(2)要围成面积为的花圃,的长是多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=ax2-bx+3的对称轴是直线x=-1
(1)求证:2a+b=0;
(2)若关于x的方程ax2-bx-8=0的一个根是4,求方程的另一个根.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,已知直线y=3x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.
(1)求k的值.
(2)如图2,若点A是双曲线y= 上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x>0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;
(3)如图3,若点D是直线y=3x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com