科目: 来源: 题型:
【题目】已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )
A. 当a=1时,函数图象过点(-1,1)
B. 当a=-2时,函数图象与x轴没有交点
C. 若a>0,则当x≥1时,y随x的增大而减小
D. 若a<0,则当x≤1时,y随x的增大而增大
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为加快网络建设,某移动通信公司在一个坡度为2∶1的山腰上建了一座垂直于水平面的信号通信塔,在距山脚处水平距离39米的点处测得通信塔底处的仰角是25°,通信塔顶处的仰角是42°.请求出通信塔的大约高度(结果保留整数,参考数据:,,,).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点在的边上,以为圆心,为半径的圆与交于点,与交于点,并且与边相切于点,连接.已知平分.
(1)求证:;
(2)若,的半径为3.求阴影部分的面积.(结果保留和根号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线的函数表达式为,点的坐标为,以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径画圆,交直线于点,交轴正半轴于点;…按此做法进行下去,其中的长为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.
(1)判断下列命题是真命题,还是假命题?
①正方形是自相似菱形;
②有一个内角为60°的菱形是自相似菱形.
③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.
(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.
①求AE,DE的长;
②AC,BD交于点O,求tan∠DBC的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c过点A(﹣1,0),B(3,0)和点C(4,5).
(1)求该二次函数的表达式及最小值.
(2)点P(m,n)是该二次函数图象上一点.
①当m=﹣4时,求n的值;
②已知点P到y轴的距离不大于4,请根据图象直接写出n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com