科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示.则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点,,是该抛物线上的点,则y1<y2<y3.其中正确结论的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】某兴趣小组为了解我市气温变化情况,记录了今年月份连续天的最低气温(单位:℃):.关于这组数据,下列结论不正确的是( )
A.平均数是 B.中位数是 C.众数是 D.方差是
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线经过点,与轴负半轴交于点,与轴交于点,且.
(1)求抛物线的解析式;
(2)点在轴上,且,求点的坐标;
(3)点在抛物线上,点在抛物线的对称轴上,是否存在以点,,,为顶点的四边形是平行四边形?若存在。求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元.
(2)若所有的T恤都能售完,求该店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;
(3)在(2)的条件下已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能获得的利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y(m)与水平距离x(m)的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,已知点O与球网的水平距离为5m,球网的高度为1.55m.羽毛球沿水平方向运动4m时,达到羽毛球距离地面最大高度是m.
(1)求羽毛球经过的路线对应的函数关系式;
(2)通过计算判断此球能否过网;
(3)若甲发球过网后,羽毛球飞行到离地面的高度为m的Q处时,乙扣球成功求此时乙与球网的水平距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=﹣c,b=2d,且开口方向相同时,则称y1是y2的“反倍顶二次函数”.
(1)请写出二次函数y=x2+x+1的一个“反倍顶二次函数”;
(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰是y1﹣y2的“反倍顶二次函数”,求n.
查看答案和解析>>
科目: 来源: 题型:
【题目】某兴趣小组想借助如图所示的直角墙角(两边足够长),用20m长的篱笆围成一个矩形ABCD(篱笆只围AB,BC两边),设ABxm.
(1)若花园的面积96m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是11m和5m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,m),B(n,﹣1)两点.
(1)求出这个一次函数的表达式.
(2)求△OAB的面积.
(3)直接写出使一次函数值大于反比例函数值的x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com