科目: 来源: 题型:
【题目】如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积(+1):2,其中正确的结论有( )个.
A.4B.3C.2D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,二次函数(,,是常数,)的图象的一部分与轴的交点在与之间,对称轴为直线.下列结论:①;②;③;④(为实数);⑤当时,.其中,正确结论的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目: 来源: 题型:
【题目】某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是( )
A.2mB.3mC.4mD.5m
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
(1)如图,求证:矩形是正方形;
(2)若,求的长度;
(3)当线段与正方形的某条边的夹角是30°时,直接写出的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线与x轴交于点B,与y轴交于点A,抛物线经过A,B两点,与x轴的另一交点为C.
(1)求抛物线的解析式;
(2)将△ABC以每秒1个单位的速度沿射线AB方向平移,平移后的三角形记为△DEF,平移时间为t秒,0≤t≤5,平移过程中EF与抛物线交于点G.
①当FG:GE=3:2时,求t的值;
②△DEF与△AOB重叠部分面积为S,直接写出S与t的函数关系式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC是等边三角形,过点B作MN∥AC,D是射线BA上的动点,射线DC绕点D逆时针旋转60°得射线DE,DE交MN于E.
(1)如图①,当D为AB中点时,求证:BD+BE=BC;
(2)如图②,当D在BA延长线上时,(1)的结论是否成立?若成立,请证明;若不成立,请写出BC,BD,BE三条线段的数量关系,并说明理由;
(3)当∠DCA=15°时,直接写出BD,BE的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).
(1)求出y1与x函数关系式;
(2)求出y2与x函数关系式;
(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com