相关习题
 0  366149  366157  366163  366167  366173  366175  366179  366185  366187  366193  366199  366203  366205  366209  366215  366217  366223  366227  366229  366233  366235  366239  366241  366243  366244  366245  366247  366248  366249  366251  366253  366257  366259  366263  366265  366269  366275  366277  366283  366287  366289  366293  366299  366305  366307  366313  366317  366319  366325  366329  366335  366343  366461 

科目: 来源: 题型:

【题目】如图,在中,

1)尺规作图:以为直径作,分别交于点(保留作图痕迹,不写做法)

2)过,垂足为

①求证:的切线.

②连接,若,求的半径长.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据道路管理规定,在广州某段笔直公路上行驶的车辆,限速40千米/时;已知交警测速点到该公路点的距离为米,(如图所示),现有一辆汽车由方向匀速行驶,测得此车从点行驶到点所用的时间为2秒.

1)求测速点到该公路的距离.

2)通过计算判断此车是否超速.(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】今年4月份,某校九年级学生参加了广州市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:

分组

分数段(分)

频数

2

5

15

10

1)求全班学生人数和的值.

2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.

3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是_____(写出所有正确结论的序号)

①当E为线段AB中点时,AFCE;

②当E为线段AB中点时,AF=

③当A、F、C三点共线时,AE=

④当A、F、C三点共线时,CEF≌△AEF.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像与坐标轴交于三点,其中点的坐标为,点的坐标为,连接.动点从点出发,在线段上以每秒1个单位长度的速度向点作匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度的速度向点作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为秒.连接

1)填空: _________ ________

2)在点运动过程中,可能是直角三角形吗?请说明理由;

3)在轴下方,该二次函数的图象上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出运动时间的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产AB两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:

1)该工厂有哪几种生产方案?

2)在这批产品全部售出的条件下,若1A型号产品获利35元,1B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?

3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】小红参加学校组织的庆祝党的十九大胜利召开知识竞赛,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,可是小红这两道题都不会,不过竞赛规则规定每位选手有两次求助机会,使用“求助”一次可以让主持人去掉其中一题的一个错误选项,主持人提醒小红可以使用两次“求助”.

(1)如果小红两次“求助”都在第一道题中使用,那么小红通关的概率是 .

(2)如果小红将每道题各用一次“求助”,请用树状图或者列表来分析她顺序通关的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.

根据统计图提供的信息,解答下列问题:

(1)求n的值;

(2)在调查的n名学生中,对雾霾天气知识不了解的学生有 人,并将条形统计图补充完整.

(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点D是△ABC的边AB上一点,点EAC的中点,过点CCFABDE延长线于点F

1)求证:ADCF

2)连接AFCD,求证:四边形ADCF为平行四边形.

查看答案和解析>>

同步练习册答案