科目: 来源: 题型:
【题目】某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量(千克)与售价(元/千克)满足一次函数关系,部分数据如下表:
售价(元/千克) | 50 | 60 | 70 |
销售量(千克) | 120 | 100 | 80 |
(1)求与之间的函数表达式.
(2)设该商品每天的总利润为(元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?
(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数的图像与反比例函数的图像交于,两点,与轴分别交于两点,且.
(1)求一次函数和反比例函数的解析式;
(2)若点与点关于轴对称,连接,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是☉的直径,为☉上一点,是半径上一动点(不与重合),过点作射线,分别交弦,于两点,过点的切线交射线于点.
(1)求证:.
(2)当是的中点时,
①若,判断以为顶点的四边形是什么特殊四边形,并说明理由;
②若,且,则_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:.绘画;.唱歌;.跳舞;.演讲;.书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合统计图中的信息解决下列问题:
(1)这次抽查的学生人数是多少人?
(2)将条形统计图补充完整.
(3)求扇形统计图中课程所对应扇形的圆心角的度数.
(4)如果该校共有1200名学生,请你估计该校选择课程的学生约有多少人.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已致点的坐标为,点在轴的正半轴上,且.过点作,交轴于点;过点作,交轴于点;过点作,交轴于点;……;按此规律进行下去,则点的坐标为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知,以点为圆心,适当长度为半径作弧,分别交边于点,分别以为圆心,大于的长为半径作弧,两弧在内交于点,作射线.若是上一点,过点作的平行线交于点,且,则直线与之间的距离是( )
A.B.C.3D.6
查看答案和解析>>
科目: 来源: 题型:
【题目】疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.
(1)判断直线DC与⊙O的位置关系,并说明理由;
(2)若HB=2,cosD=,请求出AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com