科目: 来源: 题型:
【题目】如图1是一手机支架,其中AB=8cm,底座CD=1cm,当点A正好落在桌面上时如图2所示,∠ABC=80°,∠A=60°.
(1)求点B到桌面AD的距离;
(2)求BC的长.(结果精确到0.1cm;参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)
查看答案和解析>>
科目: 来源: 题型:
【题目】正方形ABCD的边长为4,以B为原点建立如图1平面直角坐标系中,E是边CD上的一个动点,F是线段AE上一点,将线段EF绕点E顺时针旋转90°得到EF'.
(1)如图2,当E是CD中点,时,求点F'的坐标.
(2)如图1,若,且F',D,B在同一直线上时,求DE的长.
(3)如图3,将正边形ABCD改为矩形,AD=4,AB=2,其他条件不变,若,且F',D,B在同一直线上时,则DE的长是_______.(请用含n的代数式表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)若这种冰箱的售价降低50元,每天的利润是 元;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到更多的实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时利润最高,并求出最高利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E.垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在移动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
(1)试证明DE是⊙O的切线;
(2)若⊙O的半径为5,AC=6,求此时DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目: 来源: 题型:
【题目】今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com