相关习题
 0  366359  366367  366373  366377  366383  366385  366389  366395  366397  366403  366409  366413  366415  366419  366425  366427  366433  366437  366439  366443  366445  366449  366451  366453  366454  366455  366457  366458  366459  366461  366461 

科目: 来源: 题型:

【题目】如图,2×2网格(每个小正方形的边长为1)中有ABCDEFGHO九个格点.抛物线l的解析式为y=(-1)nx2+bx+c(n为整数).

(1)n为奇数,且l经过点H(01)C(21),求bc的值,并直接写出哪个格点是该抛物线上的顶点;

(2)n为偶数,且l经过点A(10)B(20),通过计算说明点F(02)H(01)是否在抛物线上;

(3)l经过这九个格点中的三个,直接写出满足这样条件的抛物线条数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数y=kx-1(x>0)的图象经过点A(1,2)和点B(m,n)(m>1),过点B作y轴的垂线,垂足为C.

(1)求该反比例函数解析式;

(2)当△ABC面积为2时,求点B的坐标.

(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax﹣1与线段AB交于点P,直接写出a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线L: 常数t0x轴从左到右的交点为BA,过线段OA的中点MMPx轴,交双曲线于点P,且OA·MP=12.

1k值;

2t=1时,求AB长,并求直线MPL对称轴之间的距离;

3L在直线MP左侧部分的图象含与直线MP的交点记为G,用t表示图象G最高点的坐标;

4L与双曲线有个交点的横坐标为x0,且满足4x06,通过L位置随t变化的过程,直接写出t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是以原点为对称中心的矩形,分别与轴交于点,连接

1)写出点和点的坐标;

2)求四边形的面积;

3)判断点在矩形的内部还是外部;

4)要使直线与矩形没有公共点,直接写出的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,轴,且与直线交于点轴并交轴于点,点是折线上一点.设过点的直线为

1)点的坐标为________;若所在的直线的函数值随的增大而减小,则的取值范围是________

2)当时,求直线的解析式;

3)若与线段有交点,设该交点为,是否存在的情况?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点.点是该直线上不同于的点,且

1)写出两点的坐标;

2)过动点且垂直于轴的直线与直线交于点,若点不在线段上,求的取值范围;

3)若直线与直线所夹锐角为,请直接写出直线的函数解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点O00),A(-50),B21),抛物线ly=-(xh21h为常数)与y轴的交点为C

1l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:

2)设点C的纵坐标为yc,求yc的最大值,此时l上有两点(x1y1),(x2y2),其中x1x2≥0,比较y1y1的大小;

3)当线段OAl只分为两部分,且这两部分的比是14时,求h的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).

(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;

(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA=OB,求抛物线的解析式;

(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2l1交于点C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.

(1)求A、B两点的坐标;

(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:

①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;

②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案