相关习题
 0  66808  66816  66822  66826  66832  66834  66838  66844  66846  66852  66858  66862  66864  66868  66874  66876  66882  66886  66888  66892  66894  66898  66900  66902  66903  66904  66906  66907  66908  66910  66912  66916  66918  66922  66924  66928  66934  66936  66942  66946  66948  66952  66958  66964  66966  66972  66976  66978  66984  66988  66994  67002  366461 

科目: 来源: 题型:

3、下面图形经过折叠可以围成一个棱柱的是(  )

查看答案和解析>>

科目: 来源: 题型:

1、圆锥的侧面展开图是(  )

查看答案和解析>>

科目: 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.精英家教网
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
35
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB′,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目: 来源: 题型:

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A?D?C?B?A的精英家教网顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.

查看答案和解析>>

科目: 来源: 题型:

几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
精英家教网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是
 

(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

查看答案和解析>>

科目: 来源: 题型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则有x1+x2=-
b
a
x1x2=
c
a
,由上式可知,一元二次方程的两根和、两根积是由方程的系数确定的,我们把这个关系称为一元二次方程根与系数的关系.若α,β是方程x2-x-1=0的两根,记S1=α+β,S222,…,Snnn
(1)S1=
 
S2=
 
S3=
 
S4=
 
直接写出结果)
(2)当n为不小于3的整数时,由(1)猜想Sn,Sn-1,Sn-2有何关系?
(3)利用(2)中猜想求(
1+
5
2
)7+(
1-
5
2
)7
的值.

查看答案和解析>>

科目: 来源: 题型:

24、恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

21、如图,?ABCD中,E为BC中点,连接AE并延长交DC的延长线于F点,连接BF.
(1)求证:AB=CF;
(2)试猜想当AB与AC满足什么数量关系时,四边形ABFC是菱形?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

解方程:(1)5(x+2)=4x(x+2);
(2)(x+1)(x+2)=2x+4.

查看答案和解析>>

科目: 来源: 题型:

计算:
(1)(π-2009)0+
12
+|
3
-2|

(2)
20
+
5
5
-
1
3
×
12

查看答案和解析>>

同步练习册答案