相关习题
 0  74985  74993  74999  75003  75009  75011  75015  75021  75023  75029  75035  75039  75041  75045  75051  75053  75059  75063  75065  75069  75071  75075  75077  75079  75080  75081  75083  75084  75085  75087  75089  75093  75095  75099  75101  75105  75111  75113  75119  75123  75125  75129  75135  75141  75143  75149  75153  75155  75161  75165  75171  75179  366461 

科目: 来源: 题型:

计算
2
3
9y
+6
y
4
-2y
1
y
的正确结果是(  )
A、3
y
B、2
y
C、-2
y
D、-3
y

查看答案和解析>>

科目: 来源: 题型:

下列计算正确的是(  )
A、
3
+
2
=
5
B、
3
+3=3
3
C、
5
7
=
35
D、
a
+
b
a
=
a+b

查看答案和解析>>

科目: 来源: 题型:

下列各式与
2
是同类二次根式的是(  )
(1)
20
,(2)
12
,(3)
4
,(4)
18
,(5)
1
2
,(6)
24
,(7)
50
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目: 来源: 题型:

已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线分别与x、精英家教网y轴交于C、D两点.
(1)求C、D两点的坐标;
(2)求过A、C、D三点的抛物线的解析式;
(3)在(2)中所求抛物线的对称轴上,是否存在点P,使△PAB为等腰三角形?若存在,求出所有的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y精英家教网轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD.
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值.

查看答案和解析>>

科目: 来源: 题型:

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到精英家教网什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

一条抛物线经过原点O与A(4,0)点,顶点B在直线y=kx+2k(k≠0)上.将这条抛物线先向上平移m(m>0)个单位,再向右平移m个单位,得到的抛物线的顶点B′仍然在直线y=kx+2k上,点A移动到了点A′.
(1)求k值及原抛物线的表达式;
(2)求使△A′OB′的面积是6032的m值.

查看答案和解析>>

科目: 来源: 题型:

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

科目: 来源: 题型:

在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
43
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PE精英家教网F沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

同步练习册答案