相关习题
 0  75317  75325  75331  75335  75341  75343  75347  75353  75355  75361  75367  75371  75373  75377  75383  75385  75391  75395  75397  75401  75403  75407  75409  75411  75412  75413  75415  75416  75417  75419  75421  75425  75427  75431  75433  75437  75443  75445  75451  75455  75457  75461  75467  75473  75475  75481  75485  75487  75493  75497  75503  75511  366461 

科目: 来源: 题型:

20、已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x0,其对应的函数值为y0,则当0<x0<x1时,试比较y0与x1的大小.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,已知抛物线y=-
3
3
x2+
2
3
3
x+
3
与x轴的两个交点为A、B,与y轴交于点C.
(1)求A,B,C三点的坐标;
(2)求证:△ABC是直角三角形;
(3)若坐标平面内的点M,使得以点M和三点A、B、C为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)

查看答案和解析>>

科目: 来源: 题型:

已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x米,面积为S平方米.
(1)求:S与x之间的函数关系式,并求当S=200米2时,x的值;
(2)设矩形的边BC=y米,如果x,y满足关系式x:y=y:(x+y)即矩形成黄金矩形,求此黄金矩形的长和宽.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

某商店以每件30元的价格购进一种衣服,试销中发现,这种衣服每天的销售量m(件)与每件的销售价x(元)满足一次函数m=210-3x.
(1)写出商店卖这种衣服每天的利润y(元)与每件的销售价x(元)之间的函数关系式(不考虑房租、人工等因素);
(2)如果商场要每天获得最大利润,每件衣服的售价应定为多少?并求出这最大利润.

查看答案和解析>>

科目: 来源: 题型:

某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响).目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:
转让数量(套)1200 1100 1000 900 800 700 600 500 400 300 200 100
价格(元/套) 240  250  260  270 280 290 300 310 320 330 340 350
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;
方案3:部分转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装.
问:
①经销商甲选择方案1与方案2一年内分别获得利润各多少元?
②经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,AB是⊙O的直径,并且AB=4,C、D为⊙O上的两点,连接BC、BD、CD,若∠BDC=30°,则弦BC的长为
 

查看答案和解析>>

科目: 来源: 题型:

1、如图,在⊙O中,∠ACB=20°,则∠AOB=
40
度.

查看答案和解析>>

科目: 来源: 题型:

如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最精英家教网大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

查看答案和解析>>

科目: 来源: 题型:

如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=
3
,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对精英家教网应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案