阅读下列材料,按要求回答问题.
(1)观察下面两块三角尺,它们有一个共同的性质:∠A=2∠B,我们由此出发来进行思考.
在图(1)中作斜边上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
,BD=c-
,由于△CDB∽△ACB,可知,即a
2=c•BD.同理b
2=c•AD,于是a
2-b
2=c(BD-AD)=c(c-b)=bc.对于图(2),由勾股定理有a
2=b
2+c
2,由于b=c,故也有a
2-b
2=bc.
在△ABC中,如果一个内角等于另一个内角的2倍,我们称这样的三角形为倍角三角形,两块三角尺都是特殊的倍角三角形,对于任意倍角三角形,上面的结论仍然成立吗?我们暂时把设想作为一种猜测:
如图(3),在△ABC中,若∠CAB=2∠ABC,则a
2-b
2=bc.
在上述由三角尺的性质到“猜测”这一认识过程中,用到了下列四种数学思想方法中的哪一种选出一个正确的并将其序号填在括号内( )
①分类的思想方法②转化的思想方法③由特殊到一般的思想方法④
数形结合的思想方法
(2)这个猜测是否正确,请证明.