精英家教网 > 初中物理 > 题目详情
(2013?安徽)如图,A、B两地相距4km,MN是与AB连线平行的一条小河的河岸,AB到河岸的垂直距离为3km,小军要从A处走到河岸取水然后送到B处,他先沿着垂直于河岸的方向到D点取水,再沿直线DB到B处.若小军的速度大小恒为5km/h,不考虑取水停留的时间.
(1)求小军完成这次取水和送水任务所需的时间.
(2)为了找到一条最短中路线(即从A到河岸和从河岸到B的总路程最短),可以将MN看成一个平面镜,从A点作出一条光线经MN反射后恰能通过B点,请你证明入射点O即为最短路线的取水点.
分析:(1)已知AB间的距离是4km,AB到河岸的距离(AD)是3km,可以计算出DB间的距离,此时便可知道小军要走的路程了,又知速度,根据v=
s
t
变形计算出所需时间;
(2)利用平面镜成像的特点:像与物关于平面镜对称,作出发光点A的像点A′,根据反射光线反向延长通过像点,可以由像点和B点确定反射光线所在的直线,两点之间,直线最短.
解答:解:(1)如下图所示,小军通过的路程是sAD+sDB
此时,sAB=4km,sAD=3km,根据勾股定理可知,sDB=5km,

故小军通过的路程s=sAD+sDB=3km+5km=8km,
∵v=
s
t

∴所需的时间:
t=
s
v
=
8km
5km/h
=1.6h;
(2)作出发光点A关于平面镜的对称点,即为像点A′,连接A′、B点交平面镜于点O,沿OB画出反射光线,连接AO画出入射光线,如图所示,图中O就是入射点;

①由图可知,A′B的连线是直线,两点之间,直线最短,即此时A′B之间的距离(sA′O+sOB)最短;
②根据平面镜成像的特点可知,此时sAD=sA′D,且Rt△ADO与Rt△A′DO有一条公共边DO,故可知Rt△ADO≌Rt△A′DO,即sAO=sA′O
故sAO+sOB=sA′O+sOB
即此时O点是最短路线的取水点.
 答:(1)小军完成这次任务需1.6小时;
(2)如上所述,入射点O为最短路线的取水点.
点评:本题利用平面镜成像的特点,并结合数学知识,解决实际问题(取水路线最短),综合性较强,是中考考查的热点问题.
练习册系列答案
相关习题

科目:初中物理 来源: 题型:

(2013?安徽)如图,静止在花朵上的是一种叫“全碳气凝胶”的固体材料,它是我国科学家研制的迄今为止世界上最轻的材料.一块体积为100cm3的“全碳气凝胶”的质量只有0.016g,则它的密度为
0.16
0.16
kg/m3

查看答案和解析>>

科目:初中物理 来源: 题型:

(2013?安徽)如图,小灯泡L1与L2均标有“1.5V,0.3A”字样,AB两端的电压U=1.5V.开关S断开时,通过L2的电流为
0.3
0.3
A.闭合开关S,两只小灯泡消耗的总电功率为
0.9
0.9
W.

查看答案和解析>>

科目:初中物理 来源: 题型:

(2013?安徽)如图示为研究二力平衡条件的实验装置,下列关于这个实验的叙述错误的是(  )

查看答案和解析>>

科目:初中物理 来源: 题型:

(2013?安徽)如图,轻质杠杆AB可以绕O点转动,在A点用细线悬挂一重物,在B点施加一个竖直向下的动力,使核杠杆在水平位置保持平衡.若将动力的方向改为沿虚线方向,仍使杠杆在水平位置平衡,则(  )

查看答案和解析>>

同步练习册答案