解:(1)已知m
酒精=1.6kg,根据ρ=
得:
V
酒精=
=
=2×10
-3m
3;
(2)已知:h
乙=0.1m,
p
乙=ρ
酒精gh
乙=0.8×10
3kg/m
3×9.8N/kg×0.1m=784Pa;
(3)∵水平地面上的轻质圆柱形容器甲、乙分别盛有质量均为m的水和酒精,
∴容器甲、乙的重力相同,为G=mg,
若要使容器对水平地面的压力最大,则选择的物体重力为最大即可,
∵G
A=ρ×2V×g=2ρVg,G
B=3ρ×V×g=3ρVg,
∴选择物体B对水平地面的压力最大,为F
最大=G
B+G=3ρVg+mg=(3ρV+m)g
根据p=
可知:要使压强最大,则容器的底面积为最小,
所以,选择物体B应放在底面积较小的甲容器里,
则p
最大=
=
.
答:①酒精的体积V
酒精为2×10
-3m
3;
②乙容器中0.1米深处酒精的压强P
酒精为784Pa;
③最大压力F
最大为(3ρV+m)g,最大压强p
最大为
.
分析:(1)已知酒精的质量,根据密度公式可求酒精的体积;
(2)已知酒精的深度,根据公式p=ρgh可求容器A中底部的压强;
(3)要使容器对水平地面的压力最大,根据物体和容器的重力比较即可得出;
要使容器对水平地面的压强最大,则在压力最大的条件下,比较容器底部的面积即可得出.
最后利用压强公式求出.
点评:本题考查液体压强和密度公式的应用,关键是知道增大压强的方法,能判断出何时压力最大和压强最大.