解:(1)使电流表指针满偏,即电路中的电流最大,总阻值最小,所以A、B两端直接连接在一起时(R
AB=0),则指针所指处盘面上应标注的示数为0.
此时表盘内的电阻为:R
0=
=
=2.5Ω.
答:在该电阻表指针满偏的位置处,盘面应标注的示数为零,此时滑动变阻器接入电路的电阻为2.5Ω.
(2)当A、B断开时,电阻应为无穷大,这是指针所指位置的示数应标∞.
答:盘面应标注的示数为∞.
(3)当指针指在表盘中间位置时,电流表中的电流是指针满偏时的一半,即I
3=0.3A,
则R
3x=
=
=5Ω,
所以该挡位表盘中间示数应为:R
3=R
3x-R
0=5Ω-2.5Ω=2.5Ω.
答:该挡位表盘中间示数应为2.5Ω.
(4)当指针指在表盘0.2位置时,电路中电流I
2=0.2A,
则R
2x=
=
=7.5Ω,
所以表盘0.2处示数应为:R
2=R
2x-R
0=7.5Ω-2.5Ω=5Ω.
同理得:表盘0.4处示数应为:R
4=1.25Ω.
由(1)分析知表盘0.6处示数应为:R
AB=0.
如图:
(5)电阻表表盘上的刻度是不均匀的,且零刻度在最右边.
理由:用R
0表示A、B短接时电路中总电阻,测量电阻R
x时,电路中电流I=
,可见I与R
x不成正比,
所以欧姆表表盘上的刻度是不均匀的;
当R
x为零时电路中的电流为最大,指针为满偏.
分析:(1)电流计的电流最大(满偏),即电路中的电流最大,总阻值最小,所以是当AB直接连在一起时,此时被测阻值为零;
(2)当AB间断开,灵敏电流计示数最小(零处),此时被测电阻最大(无穷大);
(3)该电阻表表盘正中间位置处(即电流表的示数为0.3A)时,根据欧姆定律得出在表盘正中间位置时的总电阻R
3,利用电阻的串联特点得出应标注的示数R
3;
(4)同理得出表盘中0.2A、0.4A处的上方的标注的电阻刻度R
2、R
4.最后根据数据在图乙中的表盘标上相应的电阻刻度;
(5)根据欧姆定律和串联电路的电阻特点得出电流表示数的表达式,据此判断表盘刻度是否均匀.
点评:本题考查了串联电路的特点和欧姆定律的灵活运用,难点是利用欧姆定律结合电路图理解欧姆表指针位置的含义.