精英家教网 > 高中化学 > 题目详情
12.氢气是一种清洁能源.制氢和储氢作为氢能利用的关键技术,是当前科学家主要关注的热点问题.

(1)用甲烷制取氢气的两步反应的能量变化如1图所示:
①甲烷和水蒸气反应生成二氧化碳和氢气的热化学方程式是CH4(g)+2H2O(g)=4H2(g)+CO2(g)△H=-136.5kJ/mol.
②第Ⅱ步反应为可逆反应.800℃时,若CO的起始浓度为2.0mol•L-1,水蒸气的起始浓度为3.0mol•L-1,达到化学平衡状态后,测得CO2的浓度为1.2mol•L-1,则CO的平衡转化率为60%.
(2)NaBH4是一种重要的储氢载体,能与水反应生成NaBO2,且反应前后B元素的化合价不变,该反应的化学方程式为NaBH4+2H2O=NaBO2+4H2↑,反应消耗1mol NaBH4时转移的电子数目为4NA或2.408×1024
(3)储氢还可借助有机物,如利用环已烷和苯之间的可逆反应来实现脱氢和加氢.
$?_{高温}^{FeSO_{4}/Al_{2}O_{3}}$+3H2(g)
在某温度下,向恒容容器中加入环已烷,其起始浓度为a mol•L-1,平衡时苯的浓度为b mol•L-1,该反应的平衡常数K=$\frac{27{b}^{4}}{a-b}$(用含a、b的关系式表达).
(4)一定条件下,如2图所示装置可实现有机物的电化学储氢(除目标产物外,近似认为无其它有机物生成).
①实现有机物储氢的电极是C;
A.正极   B.负极   C.阴极   D.阳极
其电极反应方程为:C6H6+6H++6e-=C6H12
②该储氢装置的电流效率η明显小于100%,其主要原因是相关电极除目标产物外,还有一种单质气体生成,这种气体是H2.由表中数据可知,此装置的电流效率η=64.3%.[η=(生成目标产物消耗的电子数/转移的电子总数)×100%,计算结果保留小数点后1位].

分析 (1)①根据盖斯定律来计算反应的焓变,根据热化学方程式的书写规律来书写热化学方程式;
②根据化学平衡“三行式”来计算转化率;
(2)NaBH4与水反应生成NaBO2,且反应前后B的化合价不变,H元素化合价由-1价、+1价变为0价,再结合转移电子守恒配平方程式,根据NaBH4和转移电子之间的关系式计算;
(3)化学平衡常数K=$\frac{c({C}_{6}{H}_{6}).{c}^{3}({H}_{2})}{c({C}_{6}{H}_{12})}$;
(4)①活泼的氢发生氧化反应,是负极;
②该实验的目的是储氢,所以阴极上发生的反应为生产目标产物,阴极上苯得电子和氢离子生成环己烷;阳极上生成氧气,同时生成氢离子,阴极上苯得电子和氢离子反应生成环己烷,苯参加反应需要电子的物质的量与总转移电子的物质的量之比就是电流效率η.

解答 解:(1)①根据第一步反应过程可以得出:CH4(g)+H2O(g)=3H2(g)+CO(g),△H=-103.3KJ/mol;
根据第二步反应过程可以得出:CO(g)+H2O(g)=H2(g)+CO2(g),△H=-33.2KJ/mol;
根据盖斯定律,上下两式相加可得:CH4(g)+2H2O(g)=4H2(g)+CO2(g)△H=-136.5 kJ/mol,故答案为:CH4(g)+2H2O(g)=4H2(g)+CO2(g)△H=-136.5 kJ/mol;
②设CO的平衡转化量为x,
           CO(g)+H2O(g)=H2(g)+CO2(g)
初始浓度:2.0    3.0       0      0
变化浓度:1.2     1.2       1.2   1.2
平衡浓度:0.8    1.8        1.2   1.2
 则CO的平衡转化率为$\frac{1.2mol/L}{2.0mol/L}$×100%=60%,故答案为:60%;
(2)NaBH4与水反应生成NaBO2,且反应前后B的化合价不变,NaBO2中B元素化合价为+3价,所以NaBH4中H元素的化合价为-1价,所以H元素化合价由-1价、+1价变为0价,再结合转移电子守恒配平方程式为NaBH4+2H2O=NaBO2+4H2↑,反应消耗1mol NaBH4时转移的物质的量=1mol×4×(1-0)=4mol,所以转移电子数为4NA或2.408×1024,故答案为:NaBH4+2H2O=NaBO2+4H2↑;4NA或2.408×1024
(3)环己烷的起始浓度为amol•L-1,平衡时苯的浓度为bmol•L-1,同一容器中各物质反应的物质的量浓度之比等于其计量数之比,所以根据方程式知,环己烷的平衡浓度为(a-b)mol/L,氢气的浓度为3bmol/L,则平衡常数K=$\frac{c({C}_{6}{H}_{6}).{c}^{3}({H}_{2})}{c({C}_{6}{H}_{12})}$mol3•L-3=$\frac{b×(3b)^{3}}{(a-b)}$=$\frac{27{b}^{4}}{a-b}$mol3•L-3
故答案为:$\frac{27{b}^{4}}{a-b}$mol3•L-3
(4)①活泼的氢发生氧化反应,是负极,该实验的目的是储氢,所以阴极上发生的反应为生产目标产物,阴极上苯得电子和氢离子生成环己烷,电极反应式为C6H6+6H++6e-=C6H12,故答案为:C;C6H6+6H++6e-=C6H12
②阳极上氢氧根离子放电生成氧气,阳极上生成2.8mol氧气转移电子的物质的量=2.8mol×4=11.2mol,
生成1mol氧气时生成2mol氢气,则生成2.8mol氧气时同时生成5.6mol氢气,
设参加反应的苯的物质的量是xmol,参加反应的氢气的物质的量是3xmol,剩余苯的物质的量为10mol×24%-xmol,反应后苯的含量=$\frac{10mol×24%-x}{10mol-3xmol+5.6mol}$=10%,
x=1.2,苯转化为环己烷转移电子的物质的量为1.2mol×6=7.2mol,则$\frac{7.2mol}{11.2mol}$×100%=64.3%,
故答案为:H2,64.3%.

点评 本题考查了化学平衡、电解池原理等知识点,根据化学平衡常数表达式、电解原理等知识点来分析解答,难点是(4)③,注意:10mol×(24%-10%)不是参加反应的苯的物质的量,为易错点.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:解答题

2.近年以来,我国多地频现种种极端天气,二氧化碳、氮氧化物、二氧化硫是导致极端天气的重要因素.
(1)活性炭可用于处理大气污染物NO,在1L恒容密闭容器中加入0.100mol NO和2.030mol固体活性炭(无杂质),生成气体E和气体F.当温度分别在T1℃和T2℃时,测得平衡时各物质的物质的量如下表

物质
T/℃n/mol
T/℃
活性炭NOEF
T12.0000.0400.0300.030
T22.0050.0500.0250.025
①请结合上表数据,写出NO与活性炭反应的化学方程式C+2NO?N2+CO2
②上述反应的平衡常数表达式K=$\frac{c({N}_{2}).c(C{O}_{2})}{{c}^{2}(NO)}$,根据上述信息判断,T1和T2的关系是c.
A.T1>T2 B.T1<T2 C.无法比较
(2)碘循环工艺不仅能吸收SO2降低环境污染,同时又能制得H2,具体流程如图1所示:

①用离子方程式表示反应器中发生的反应:SO2+I2+2H2O=SO42-+2I-+4H+
②用化学平衡移动的原理分析,在HI分解反应中使用膜反应器分离出H2的目的是HI分解为可逆反应,及时分离出产物H2,有利于反应正向进行.
(3)开发新能源是解决大气污染的有效途径之一.直接甲醇燃料电池(简称DMFC)由于结构简单、能量转化率高、对环境无污染,可作为常规能源的替代品而越来越受到关注.DMFC工作原理如图2所示.
通过a气体的电极是原电池的负极(填“正”或“负”),b电极反应式为O2+4e-+4H+=2H2O.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

3.葡萄糖分子中含有羟基和醛基官能团.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

20.下列有关说法,不正确的是(  )
①形成化学键的过程一定是化学变化  
②铁分别与氯气和稀盐酸反应所得的氯化物相同
③为测定熔融氢氧化钠的导电性,可将氢氧化钠固体放在石英坩埚中加热熔化
④常温下,pH=12的溶液一定能大量存在:K+、Cl-、SO32-、S2-
⑤在“石蜡→液体石蜡→石蜡蒸气→裂化气”的变化过程中,被破坏的作用力依次是:范德华力、共价键、共价键.
A.①②③⑤B.②③④C.①③④D.①②④⑤

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

7.写出符合下列要求的化学方程式.
(1)检验甲苯中含有的酒精:2CH3CH2OH+2Na→2CH3CH2ONa+H2↑.
(2)除去甲烷中混有的乙烯:CH2=CH2+Br2→CH2Br-CH2Br.
(3)由甲苯制备梯恩梯(TNT):+3HNO3$→_{△}^{浓硫酸}$+3H2O.
(4)将2-溴丙烷转化为2-丙醇:+NaOH$→_{△}^{H_{2}O}$+NaBr.
(5)将1-丙醇转化为丙醛:2CH3CH2CH2OH+O2$→_{△}^{Cu}$2CH3CH2CHO+2H2O.
(6)乙二醇与乙二酸转化为六元环状酯:+$→_{△}^{催化剂}$+2H2O.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

17.铝和硫的单质及其化合物在工农业生产和生活中有重要的作用.
(1)真空碳热还原-氯化法可实现由铝矿制备金属铝,其相关的热化学方程式如下:
2Al2O3(s)+2AlCl3(g)+6C(s)═6AlCl(g)+6CO(g)△H=a kJ•mol-1
3AlCl(g)=2Al(l)+AlCl3(g)△H=b kJ•mol-1
反应Al2O3(s)+3C(s)=2Al(l)+3CO(g)的△H=kJ•mol-1(用含a、b的代数式表示)0.5a+b;
(2)铝电池性能优越,Al-Ag2O电池可用作水下动力电源,其原理如图1所示:请写出该电池正极反应式Ag2O+2e-+H2O=2Ag+2OH-;常温下,用该化学电源和惰性电极电解300mlNaCl溶液(过量),阳极的电极反应式为2Cl--2e-=Cl2↑,电解反应的离子方程式为2Cl-+2H2O$\frac{\underline{\;通电\;}}{\;}$C12↑+H2↑+2OH-,消耗27mg Al后溶液的pH=12(不考虑溶液体积的变化).
(3)硫酸的年产量可以用来衡量一个国家的无机化工水平.工业生产硫酸的流程中存在反应:2SO2(g)+O2(g)?2SO3(g).反应体系中SO3的百分含量和温度的关系如图2所示(曲线上任何一点都表示平衡状态).下列说法正确的是de
a.若在恒温、恒压条件下向上述平衡体系中通入氦气,平衡不移动
b.若在恒温、恒容条件下向上述平衡体系中通入SO3(g),压强增大,平衡向右移动
c.B点、C点反应的平衡常数分别为K1、K2,则K1<K2
d.在A点时,消耗1mol SO2必定同时消耗1mol SO3
e.在D点时,v正>v逆.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

4.Na2S2O3是重要的化工原料,易溶于水,在中性或碱性环境中稳定.
Ⅰ.制备Na2S2O3•5H2O反应原理:Na2SO3(aq)+S(s)$\frac{\underline{\;\;△\;\;}}{\;}$Na2S2O3(aq)
实验步骤:
①称取15g Na2SO3加入圆底烧瓶中,再加入80mL蒸馏水.另取5g研细的硫粉,用3mL乙醇润湿,加入上述溶液中.
②安装实验装置(如图1所示,部分夹持装置略去),水浴加热,微沸60min.
③趁热过滤,将滤液水浴加热浓缩,冷却析出Na2S2O3•5H2O,经过滤、洗涤、干燥,得到产品.回答问题:
(1)硫粉在反应前用乙醇润湿的目的是使硫粉易于分散到溶液中
(2)仪器a的名称是冷凝管,其作用是冷凝回流
(3)产品中除了有未反应的Na2SO3外,最可能存在的无机杂质是Na2SO4.检验是否存在该杂质的方法是取少量产品溶于过量稀盐酸,过滤,向滤液中加BaCl2溶液,若有白色沉淀,则产品中含有Na2SO4
(4)该实验一般控制在碱性环境下进行,否则产品发黄,用离子反应方程式表示其原因:S2O32?+2H+=S↓+SO2↑+H2O
Ⅱ.测定产品纯度
准确称取W g产品,用适量蒸馏水溶解,以淀粉作指示剂,用0.100 0mol•L-1碘的标准溶液滴定.
反应原理为2S2O${\;}_{3}^{2-}$+I2═S4O${\;}_{6}^{2-}$+2I-
(5)滴定至终点时,溶液颜色的变化:由无色变为蓝色
(6)滴定起始和终点的液面位置如图2,则消耗碘的标准溶液体积为mL.产品的纯度为(设Na2S2O3•5H2O相对分子质量为M)$\frac{3.620×1{0}^{-3}M}{W}$×100%
Ⅲ.Na2S2O3的应用
(7)Na2S2O3还原性较强,在溶液中易被Cl2氧化成SO${\;}_{4}^{2-}$,常用作脱氯剂,该反应的离子方程式为S2O32?+4Cl2+5H2O=2SO42?+8Cl?+10H+

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

1.叠氮酸(HN3)与醋酸酸性相似,下列叙述中错误的是(  )
A.HN3水溶液中微粒浓度大小顺序为:c(HN3)>c(N${\;}_{3}^{-}$)>c(H+)>c(OH-
B.HN3与NH3作用生成的叠氮酸铵是离子化合物
C.NaN3水溶液中离子浓度大小顺序为:c(Na+)>c(N${\;}_{3}^{-}$)>c(OH-)>c(H+
D.N${\;}_{3}^{-}$与CO2含相等电子数

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

2.中国药学家屠呦呦因最早发现并提纯抗疟新药青蒿素而获得2015年度诺贝尔生理学或医学奖.已知青蒿素可从与青蒿同属的黄花蒿中提取,其结构如图所示,下列有关青蒿素说法不正确的是(  )
A.化学式为C15H20O5
B.能与NaOH溶液发生反应
C.与H2O2含有相似结构,具有杀菌作用
D.提取方法主要是低温萃取

查看答案和解析>>

同步练习册答案