精英家教网 > 高中化学 > 题目详情
5.某研究小组在实验室探究氨基甲酸铵(NH2COONH4)分解反应平衡常数和水解反应速率的测定.
(1)将一定量纯净的氨基甲酸铵固体置于特制的密闭 真空容器中(假设容器体积不变,固体试样体积忽略不计),在恒定温度下使其达到分解平衡:
NH2COONH4(s)?2NH3(g)+CO2(g)
实验测得的不同温度下的平衡数据列于下表:
温度/℃15.020.025.030.035.0
平衡总压强/kPa5.78.312.017.124.0
平衡气体总浓度/mol•L-12.4×10-33.4×10-34.8×10-36.8×10-39.4×10-3
①可以判断该分解反应已经达到平衡的是BC.
A.2v(NH3)=v(CO2
B.密闭容器中总压强不变
C.密闭容器中混合气体的密度不变
D.密闭容器中氨气的体积分数不变
②根据表中数据,列式计算 25.0℃时氨基甲酸铵的分解平衡常数:K=c2(NH3)•c(CO2)=($\frac{2}{3}$c2($\frac{1}{3}$c)=$\frac{4}{27}$×(4.8×10-33=1.6×10-8
③取一定量的氨基甲酸铵固体放在一个带活塞的密闭真空容器中,在 25.0℃下达到分解平衡.若在恒温下压缩容器体积,氨基甲酸铵固体的质量增加(填“增加”、“减少”或“不变”).
④氨基甲酸铵分解反应的焓变△H>0(填“>”、“=”或“<”),熵变△S>0(填“>”、“=”或“<”).
(2)已知:NH2COONH4+2H2O?NH4HCO3+NH3•H2O.该研究小组分别用三份不同初始浓度的氨基甲酸铵溶液测定其水解反应速率,得到c(NH2COO-)随时间的变化趋势如图所示.
⑤计算 25.0℃时,0~6min 氨基甲酸铵水解反应的平均速率:0.05mol•L-1•min-1
⑥根据图中信息,如何说明该水解反应速率随温度升高而增大:25.0℃时反应物的起始浓度较小,但0~6min的平均反应速率(曲线的斜率)仍比15.0℃时的大.

分析 (1)①根据化学平衡的标志来判断;
②先根据反应 NH2COONH4(s)?2NH3(g)+CO2(g).可知平衡时容器内气体的浓度之比为2:1,由总浓度求出NH3、CO2 的平衡浓度,最后代入平衡常数的表达式来计算;
③根据压强对化学平衡的影响判断平衡移动的方向从而判断氨基甲酸铵固体的质量的变化情况;
④根据表中数据判断随着温度升高,平衡移动的方向,从而判断出正反应是吸热还是放热;根据气态物质的熵大于液态物质的熵判断出熵变;
(2)⑤根据化学反应速率的公式来计算;
⑥由图象数据可以得出,用不同初始浓度,不同温度下的平均速率的大小来说明.

解答 解:(1)①A.因未指明速率的方向,无法确定正逆反应速率的关系,故A错误;
B.该反应是气体体积增大的反应,故当容器内压强不变时,已达到平衡,故B正确;
C.该反应是气体质量增大的反应,故当密闭容器中混合气体的密度不变,已达到平衡,故C正确;
D.因反应物(NH2COONH4)是固体物质,所以密闭容器中NH3的体积分数始终不变,为2/3,故D错误;
故选:BC;
②容器内气体的浓度之比为2:1,故NH3和CO2的浓度分别为$\frac{2}{3}$c、$\frac{1}{3}$c,代入平衡常数表达式:
K=c2(NH3)•c(CO2)=($\frac{2}{3}$c2($\frac{1}{3}$c)=$\frac{4}{27}$×(4.8×10-3 )3 =1.6×10-8,故答案为:1.6×10-8
③压缩容器体积,气体压强增大,平衡向逆向移动,氨基甲酸铵质量增加,故答案为:增加; 
④从表中数据可以看出,随着温度升高,气体的总浓度增大,平衡正向移动,则该反应为吸热反应,△H>0;反应中固体变为气体,混乱度增大,△S>0,
故答案为:>;>;
(2)⑤化学反应速率V=$\frac{△C}{△t}$=$\frac{(2.2-1.9)mol•{L}^{-1}}{6min}$=0.05mol/(L•min),故答案为:0.05mol/(L•min);
⑥因25℃反应物起始浓度较小,但0~6min的平均反应速率(曲线的斜率)仍比15℃大,
故答案为:25℃反应物起始浓度较小,但0~6min的平均反应速率(曲线的斜率)仍比15℃大.

点评 本题是一道考查化学反应速率概念及其计算,化学平衡、化学平衡常数的概念及其计算,以及判断反应的焓变、熵变等相关知识的试题,要求考生利用图表、进行数据分析判断,吸收、提取有效信息,突出了化学信息运用能力的考查.同时,对于作为化学的基本技能之一的化学计算,渗透在相关的知识块之中,强调计算的实用性以及认识、解决问题的综合性.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:解答题

11.X、Y、Z、W、R是5种短周期元素,其原子序数依次增大.X是周期表中原子半径最小的元素,Y原子最外层电子数是次外层电子数的3倍,Z、W、R处于同一周期,R与Y处于同一族,Z、W原子的核外电子数之和与Y、R原子的核外电子数之和相等.请推断后回答下列问题:
(1)Z在Y单质中燃烧的产物电子式为,用电子式表示X与R化合物的形成过程
(2)Y、Z、W、R形成的简单离子半径由大到小顺序为S2->O2->Na+>Al3+
(3)W单质与Z的最高价氧化物对应的水化物反应的离子方程式为2Al+2OH-+6H2O=2[Al(OH)4]-+3H2↑,W单质与R的最高价氧化物对应的水化物反应的化学方程式为2Al+3H2SO4=Al2(SO43+3H2↑.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

12.下列常温下的下列物质属于所气态有机物的是 (  )
A.CH3ClB.CH2Cl2C.CCl4D.

查看答案和解析>>

科目:高中化学 来源: 题型:填空题

9.“亚硫酸铵吸收法”用(NH42SO3溶液在吸收塔中封闭循环脱硫,发生的主要反应为(NH42SO3+SO2+H2O═2NH4HSO3,测得25℃时溶液pH与各组分物质的量分数的变化关系如图所示.a点时n(HSO${\;}_{3}^{-}$):n(H2SO3)=1:1,b点时溶液pH=7,则n(NH4+):n(HSO${\;}_{3}^{-}$)=3:1.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

16.某溶液中的阳离子有四种,分别是NH4+、Mg2+、Fe2+和Al3+,若向其中加入过量的NaOH溶液,微热并搅拌,再加入过量的盐酸,溶液中大量减少的金属离子是(  )
A.Fe2+B.Mg2+C.Al3+D.NH4+

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

10.生产中可用双氧水氧化法处理电镀含氰废水,某化学兴趣小组模拟该法探究有关因素对破氰反应速率的影响(注:破氰反应是指氧化剂将CN-氧化的反应).
【相关资料】
①氰化物主要是以CN-和[Fe(CN)6]3-两种形式存在.
②Cu2+可作为双氧水氧化法破氰处理过程中的催化剂;Cu2+在偏碱性条件下对双氧水分解影响较弱,可以忽略不计.
③[Fe(CN)6]3-较CN-难被双氧水氧化,且pH越大,[Fe(CN)6]3-越稳定,越难被氧化.
【实验过程】
在常温下,控制含氰废水样品中总氰的初始浓度和催化剂Cu2+的浓度相同,调节含氰废水样品不同的初始pH和一定浓度双氧水溶液的用量,设计如下对比实验:
(l)请完成以下实验设计表(表中不要留空格)
实验
序号
实验目的初始pH废水样品体积/mLCuSO4溶液的体积/mL双氧水溶液的体积/mL蒸馏水的体积/mL
为以下实验操作参考760101020
废水的初始pH对破氰反应速率的影响1260101020
双氧水的浓度对破氰反应速率的影响760102010
实验测得含氰废水中的总氰浓度(以CN-表示)随时间变化关系如图所示.

(2)实验①中20~60min时间段反应速率:υ(CN-)=0.0175mol•L-1•min-1
(3)实验①和实验②结果表明,含氰废水的初始pH增大,破氰反应速率减小,其原因可能是初始pH增大,催化剂Cu2+会形成Cu(OH)2沉淀,影响了Cu2+的催化作用(或初始pH增大,[Fe(CN)6]3-较中性和酸性条件下更稳定,难以氧化)(填一点即可).在偏碱性条件下,含氰废水中的CN-最终被双氧水氧化为HCO3-,同时放出NH3,试写出该反应的离子方程式:CN-+H2O2+H2O═NH3↑+HCO3-
(4)该兴趣小组同学要探究Cu2+是否对双氧水氧化法破氰反应起催化作用,请你帮助他设计实验并验证上述结论,完成下表中内容.(己知:废水中的CN-浓度可用离子色谱仪测定)
实验步骤(不要写出具体操作过程)预期实验现象和结论

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

17.生产中可用双氧水氧化法处理电镀含氰废水,某化学兴趣小组模拟该法探究有关因素对破氰反应速率的影响(注:破氰反应是指氧化剂将CN-氧化的反应).
【相关资料】
①氰化物主要是以CN-和[Fe(CN)6]3-两种形式存在.
②Cu2+可作为双氧水氧化法破氰处理过程中的催化剂;Cu2+在偏碱性条件下对双氧水分解影响较弱,可以忽略不计.
③[Fe(CN)6]3-较CN-难被双氧水氧化,且pH越大,[Fe(CN)6]3-越稳定,越难被氧化.
【实验过程】
在常温下,控制含氰废水样品中总氰的初始浓度和催化剂Cu2+的浓度相同,调节含氰废水样品不同的初始pH和一定浓度双氧水溶液的用量,设计如下对比实验:
(l)请完成以下实验设计表(表中不要留空格)
实验
序号
实验目的初始pH废水样品体积/mLCuSO4溶液的体积/mL双氧水溶液的体积/mL蒸馏水的体积/mL
为以下实验操作参考760101020
废水的初始pH对破氰反应速率的影响1260101020
双氧水的浓度对破氰反应速率的影响760102010
实验测得含氰废水中的总氰浓度(以CN-表示)随时间变化关系如图所示.
(2)实验①中20~60min时间段反应速率:υ(CN-)=0.0175mol•L-1•min-1
(3)实验①和实验②结果表明,含氰废水的初始pH增大,破氰反应速率减小,其原因可能是初始pH增大,催化剂Cu2+会形成Cu(OH)2沉淀,影响了Cu2+的催化作用(或初始pH增大,[Fe(CN)6]3-较中性和酸性条件下更稳定,难以氧化)(填一点即可).在偏碱性条件下,含氰废水中的CN-最终被双氧水氧化为HCO3-,同时放出NH3,试写出该反应的离子方程式:CN-+H2O2+H2O═NH3↑+HCO3-
(4)该兴趣小组同学要探究Cu2+是否对双氧水氧化法破氰反应起催化作用,请你帮助他设计实验并验证上述结论,完成下表中内容.(己知:废水中的CN-浓度可用离子色谱仪测定)
实验步骤(不要写出具体操作过程)预期实验现象和结论
分别取等体积、等浓度的含氰废水于甲、乙两支试管中,再分别加入等体积、等浓度的双氧水溶液,只向甲试管中加入少量的无水硫酸铜粉末,用离子色谱仪测定相同反应时间内两支试管中的CN-浓度相同时间内,若甲试管中的CN-浓度小于乙试管中的CN-浓度,则Cu2+对双氧水破氰反应起催化作用;若两试管中的CN-浓度相同,则Cu2+对双氧水破氰反应不起催化作用

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

14.下列物质完全燃烧,生成的CO 2的物质的量与消耗O 2的物质的量相等的是(  )
A.CH 4B.24C.26OD.6126

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

15.下列结论均出自《实验化学》中的实验,其中错误的是(  )
A.往新配制的可溶性淀粉溶液中滴加碘水,溶液显蓝色,用CCl4不能从中萃取出碘
B.将3~4个火柴头浸于水中,片刻后取少量溶液于试管中,加AgNO3溶液、稀硝酸和NaNO2溶液,若出现白色沉淀,说明含有氯元素
C.硝酸钾饱和溶液冷却未出现结晶时,可以用玻棒充分磨擦器皿壁促使晶体析出
D.提取海带中碘元素时,为保证I-完全氧化为I2,加入的氧化剂(H2O2或新制氯水)均应过量

查看答案和解析>>

同步练习册答案