精英家教网 > 高中化学 > 题目详情
13.X、Y、Z、J、Q、W六种元素,原子序数依次增大,其中X、Y、Z、J、Q是短周期主族元素.元素Z在地壳中含量最高,J元素的焰色反应呈黄色,Q的最外层电子数与其电子总数比为3:8,X能与J形成离子化合物,且J+的半径大于X-的半径,Y的氧化物是形成酸雨的主要物质之一.W是应用最广泛的金属元素.请回答:
(1)Y元素原子的结构示意图为
(2)元素的金属性J>W(填“>”或“<”),下列各项中,能说明这一结论的事实有ACD(填序号)
A.单质与酸反应置换出氢气的难易程度        B.单质的熔点
C.最高价氧化物对应水化物的碱性强弱        D.在金属活动顺序表中的位置
(3)已知:①3W(s)+2Z2(g)=W3Z4(s)△H1=-1118.4kJ/mol
②2X2(g)+Z2(g)=2X2Z(g)△H2=-483.8kJ/mol
则反应3W(s)+4X2Z(g)=W3Z4(s)+4X2(g)的△H=-150.8kJ/mol.
(4)已知反应:2QZ2(g)+Z2(g)?2QZ3(g),QZ2的平衡转化率与温度、压强的关系如图所示:
①压强:P1<P2(填“>”、“=”或“<”).
②200℃下,将一定量的QZ2和Z2充入体积不变的密闭容器中,经10min后测得容器中各物质的物质的量浓度如下表所示:
气体QZ2Z2QZ3
浓度(mol/L)0.41.21.6
能说明该反应达到化学平衡状态的是bd.
a.反应速率v(QZ2)=v(QZ3
b.体系的压强保持不变
c.混合气体的密度保持不变
d.QZ2和Z2的体积比保持不变
计算上述反应在0~10min内,v(QZ2)=0.16mol/(L.min).
(5)以YX3为燃料可以设计成燃料电池(电极材料均为惰性电极,KOH溶液作电解质溶液)该电池负极电极反应式为2NH3-6e-+6OH-=N2+6H2O.

分析 X、Y、Z、J、Q、W六种元素,原子序数依次增大,其中X、Y、Z、J、Q是短周期主族元素.元素Z在地壳中含量最高,则Z为Na;J元素的焰色反应呈黄色,则J为Na;Q的最外层电子数与其电子总数比为3:8,原子序数大于Na,处于第三周期,设最外层电子数为a,则a:(2+8+a)=3:8,解得a=6,故Q为S元素;X能与J形成离子化合物,且J+的半径大于X-的半径,则X为H元素;Y原子序数小于钠,处于第二周期,而Y的氧化物是形成酸雨的主要物质之一,故Y为N元素;W是应用最广泛的金属元素,则W为Fe,据此解答.
(1)Y为N元素,原子核外有7个电子,有2个电子层,各层电子数为2、5;
(2)根据金属活动顺序表、金属单质与水或酸反应剧烈程度、难易程度,最高价氧化物对应水化物的碱性强弱等判断金属性强弱;
(3)已知:①3W(s)+2Z2(g)=W3Z4(s)△H1=-1118.4kJ/mol
②2X2(g)+Z2(g)=2X2Z(g)△H2=-483.8kJ/mol
根据盖斯定律,①-②×2可得:3W(s)+4X2Z(g)=W3Z4(s)+4X2(g;
(4)①正反应为气体体积减小的反应,温度一定时,增大压强平衡正向移动,QZ2(g)的转化率增大;
②可逆反应到达平衡时,同种物质的正逆速率相等,各组分的浓度、含量保持不变,由此衍生的其它一些量由方程式可知,△c(QZ2)=△c(QZ3)=1.6mol/L,再根据v=$\frac{△c}{△t}$计算v(QZ2);
(5)以NH3为燃料设计成燃料电池,电极材料均为惰性电极,KOH溶液作电解质溶液,原电池负极发生氧化反应,氨气在负极失去电子,碱性条件下可以得到氮气与水.

解答 解:X、Y、Z、J、Q、W六种元素,原子序数依次增大,其中X、Y、Z、J、Q是短周期主族元素.元素Z在地壳中含量最高,则Z为Na;J元素的焰色反应呈黄色,则J为Na;Q的最外层电子数与其电子总数比为3:8,原子序数大于Na,处于第三周期,设最外层电子数为a,则a:(2+8+a)=3:8,解得a=6,故Q为S元素;X能与J形成离子化合物,且J+的半径大于X-的半径,则X为H元素;Y原子序数小于钠,处于第二周期,而Y的氧化物是形成酸雨的主要物质之一,故Y为N元素;W是应用最广泛的金属元素,则W为Fe.
(1)Y为N元素,原子的结构示意图为,故答案为:
(2)元素的金属性Na>Fe,
A.金属单质与酸反应生成氢气越容易,其金属性越强,故A正确;
B.单质的熔点属于物理性质,不能比较金属性强弱,故B错误
C.最高价氧化物对应水化物的碱性越强,元素金属性越强,故C正确;
D.根据在金属活动顺序表中的位置,可以判断金属性强弱,故D正确,
故选:ACD;
(3)已知:①3W(s)+2Z2(g)=W3Z4(s)△H1=-1118.4kJ/mol
②2X2(g)+Z2(g)=2X2Z(g)△H2=-483.8kJ/mol
根据盖斯定律,①-②×2可得:3W(s)+4X2Z(g)=W3Z4(s)+4X2(g),则△H=-1118.4kJ/mol-2(-483.8kJ/mol)=-150.8kJ/mol,
故答案为:-150.8kJ/mol;
(4)①由图可知,温度一定,压强P1时QZ2(g)的转化率较小,正反应为气体体积减小的反应,温度一定时,增大压强平衡正向移动,QZ2(g)的转化率增大,故压强P1<P2
故答案为:<;
②a.反应速率v(QZ2)=v(QZ3),未指明正逆速率,不能说明到达平衡,若分别表示正、逆速率时反应到达平衡,故a错误;
b.随反应进行气体物质的量减小,恒温恒容下,压强减小,当体系的压强保持不变时,说明到达平衡,故b正确;
c.混合气体总质量不变,容器容积不变,混合气体的密度为定值,始终保持不变,故c错误;
d.QZ2和Z2按物质的量1:3混合,二者氨气2:1反应,随反应进行二者体积之比发生变化,当二者体积比保持不变时,反应到达平衡状态,故d正确;
由方程式可知,△c(QZ2)=△c(QZ3)=1.6mol/L,故0~10min内,v(QZ2)=$\frac{1.6mol/L}{10min}$=0.16mol/(L.min),
故答案为:bd;0.16mol/(L.min);
(5)以NH3为燃料设计成燃料电池,电极材料均为惰性电极,KOH溶液作电解质溶液,原电池负极发生氧化反应,氨气在负极失去电子,碱性条件下可以得到氮气与水,该电池负极电极反应式为:2NH3-6e-+6OH-=N2+6H2O,
故答案为:2NH3-6e-+6OH-=N2+6H2O.

点评 本题考查结构性质位置关系应用、盖斯定律应用、化学平衡计算与影响因素、平衡状态判断、化学平衡图象、原电池等,注意掌握金属性、非金属强弱比较实验事实.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:选择题

3.下列说法不正确的是(  )
A.容量瓶、量筒和滴定管上都标有使用温度,量筒、容量瓶无“0”刻度,滴定管有“0”刻度;使用时滴定管水洗后还需润洗,但容量瓶水洗后不用润洗
B.2014 年西非国家爆发了埃博拉疫情,埃博拉病毒对化学药品敏感,乙醇、次氯酸钠溶液均可以将病毒氧化而达到消毒的目的
C.金属着火时,可用细沙覆盖灭火;电器设备引起的火灾,不可用泡沫灭火器灭火
D.在4mL0.1mol•L-1的K2Cr2O7溶液中滴加数滴1mol•L-1的NaOH溶液,溶液颜色从橙色变成黄色

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

4.证明溴乙烷中溴元素的存在,有下列几步,其正确的操作顺序是②③④①.
①加入硝酸银溶液 
②加入氢氧化钠溶液 
③加热 
④加入稀硝酸至溶液呈酸性.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

1.目前,新能源不断被利用到现代的汽车中,高铁电池技术就是科研机构着力研究的一个方向.
(1)高铁酸钾-锌电池(碱性介质)是一种典型的高铁电池,则该种电池负极材料是Zn(填化学式).
(2)工业上常采用NaClO氧化法生产高铁酸钾(K2FeO4),K2FeO4在碱性环境中稳定,在中性和酸性条件下不稳定.反应原理为
Ⅰ.在碱性条件下,利用NaClO氧化Fe(NO33制得Na2FeO4:3NaClO+2Fe(NO33+10NaOH═2Na2FeO4↓+3NaCl+6NaNO3+5H2O.
Ⅱ.Na2FeO4与KOH反应生成K2FeO4:Na2FeO4+2KOH═K2FeO4+2NaOH.
主要的生产流程如图1:

①写出反应①的离子方程式:Cl2+2OH-=Cl-+ClO-+H2O.
②流程图中反应③是在某低温下进行的,且此温度无NaOH析出,说明此温度下
Ksp(K2FeO4)<Ksp(Na2FeO4)(填“>”、“<”或“=”).
(3)已知K2FeO4在水溶液中可以发生:4FeO${\;}_{4}^{2-}$+10H2O?4Fe(OH)3↓+8OH-+3O2↑,则K2FeO4在水处理中的作用是杀菌消毒、净水.
(4)FeO${\;}_{4}^{2-}$在水溶液中的存在形态如图2所示.
①若向pH=10的这种溶液中加硫酸至pH=2,HFeO${\;}_{4}^{-}$的分布分数的变化情况是先变大,后变小.
②若向pH=6的这种溶液中滴加KOH溶液,则溶液中含铁元素的微粒中,HFeO4-转化为FeO42-(填化学式).

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

8.铁及其化合物在生产和生活中有着广泛的应用.
(1)氧化铁是重要工业颜料,用废铁屑制备它的流程如下:

回答下列问题:
①操作Ⅰ、Ⅱ的名称分别是过滤、洗涤.
②写出在空气中煅烧FeCO3的化学方程式4FeCO3+O2$\frac{\underline{\;高温\;}}{\;}$2Fe2O3+4CO2
③煅烧如果不充分,产品中将有Fe2+存在,试设计实验检验产品中有无Fe2+
(2)有些同学认为KMnO4溶液滴定也能进行铁元素含量的测定.
a.称取2.850g绿矾(FeSO4•7H2O)产品,配成250mL溶液;
b.量取25.00mL待测溶液于锥形瓶中;
c.用硫酸酸化的0.010 00mol•L-1 KMnO4溶液滴定至终点,消耗KMnO4溶液体积的平均值为20.00mL.
①写出酸性KMnO4溶液与FeSO4溶液反应的离子方程式MnO4-+5Fe2++8H+=5Fe3++Mn2++4H2O.
②计算上述样品中FeSO4•7H2O的质量分数为97.5%[已知M(FeSO4•7H2O)=278g•mol-1]
③滴定达到终点时锥形瓶中溶液颜色变化为溶液由浅绿色变为紫红色,且半分钟内不立即褪去.
④下列操作会导致样品中FeSO4•7H2O的质量分数的测定结果偏高的有bc.
a.未干燥锥形瓶
b.盛装标准液的滴定管没有用标准液润洗
c.滴定结束时仰视刻度线读数
d.量取待测液的滴定管没有润洗.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

18.硅与金刚砂(SiC)是两种重要的工业产品,它们都可由二氧化硅与碳反应制得,反应关系如图1所示:

(1)基态硅原子核外未成对的电子数为2;Si与C相比,第一电离能较小的是Si(填元素符号).
(2)由SiO2生成SiC的化学方程式是SiO2+3C$\frac{\underline{\;高温\;}}{\;}$SiC+2CO↑.
(3)粗硅提纯过程中往往会生成四氯化硅(SiCl4),该物质在常温常压下为无色液体,其中Si原子的杂化轨道类型是sp3,Cl-Si-Cl键的键角为109°28′.
(4)SiC晶体与晶体硅(结构如图甲所示)的结构相似,其中C原子和Si原子的位置是交替的,在SiC中最小的环上有6个原子,SiC与晶体硅相比,SiC熔点较高.原因是二者均为原子晶体,结构和组成类似,Si-Si键键长大于Si-C键键长,故Si-Si键键能小,导致晶体硅的熔点低于碳化硅.
(5)SiC晶胞如图乙所示,Si-C键的键能为a kJ•mol-1,理论上分解1mol SiC形成气态的原子所需要的能量为4akJ(用含a的式子表示).

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

5.一定条件下,燃烧1g乙炔(C2H2)气体,生成液态水和二氧化碳,放出50kJ热量,则该条件下乙炔的燃烧热为(  )
A.50 kJ/molB.3900 kJ/molC.1300 kJ/molD.450 kJ/mol

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

2.体积为1dm3的干燥烧瓶用排空气法冲入氨气后,测得烧瓶中气体对氧气的相对密度为0.625,用此气体进行喷泉实验,当喷泉停止后,进入烧瓶中液体的体积为(  )
A.$\frac{3}{4}$dm3B.$\frac{1}{2}$dm3C.$\frac{1}{4}$dm3D.全满

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

3.下列离子方程式书写正确的是(  )
A.烧碱溶液中加入铝片:Al+4OH-═AlO2-+2H2O
B.澄清石灰水与足量小苏打溶液混合:Ca2++OH-+HCO3-═CaCO3↓+H2O
C.将磁性氧化铁溶于盐酸:Fe3O4+8H+═3Fe3++4H2O
D.向NaAlO2溶液中通入少量CO2:2AlO2-+CO2+3H2O═2Al(OH)3↓+CO32-

查看答案和解析>>

同步练习册答案