精英家教网 > 高中化学 > 题目详情
6.氢气是清洁能源,也是重要的化工原料.

(1)已知H2S高温热分解制H2的反应为H2S(g)?H2(g)+$\frac{1}{2}$S2(g).在体积为2L的恒容密闭容器中,通入3.5mol H2S,控制不同温度进行H2S分解实验,测得H2S的平衡转化率与温度的关系如图1所示.
①985℃时,反应经7min达到平衡,则上述反应从起始至7min内的反应速率v(S2)=0.05molL-1min-1
②反应S2(g)+2H2(g)?2H2S(g) 的△Η<(填“>”或“<”)0.
(2)使用石油热裂解的副产物CH4来制取CO和H2,其生产流程如图2所示.
①此流程的第Ⅰ步反应为CH4(g)+H2O(g)?CO(g)+3H2(g),一定条件下CH4的平衡转化率与温度、压强的关系如图3所示.则P1<(填“<”“>”或“=”)P2
②100℃时,将3mol CH4和4mol H2O通入容积为100L的恒容密闭容器中,达到平衡时容器中CO(g)和H2O(g)的浓度相同.100℃时该反应的平衡常数K=0.0216.

分析 (1)①根据在985℃时,H2S的转化率为40%,即可求出H2S的物质的量的该变量,然后根据在反应中,物质的量的该变量之比等于计量数之比,即可求出S2的物质的量的该变量,然后根据v=$\frac{\frac{△n}{V}}{△t}$来计算反应速率.
②据图可知,温度越高,H2S的平衡转化率越高,则说明升高温度,反应H2S=H2(g)+$\frac{1}{2}$S2(g)平衡右移,反应吸热;
(2)①采取控制变量法分析,由图可知温度相同时,到达平衡时,压强为P1的CH4转化率高,反应为气体体积增大的反应,增大压强平衡向体积减小的方向移动;
②依据化学平衡三段式列式计算平衡浓度结合平衡常数概念计算得到.

解答 解:(1)①985℃时,H2S的转化率为40%,H2S的物质的量的该变量△n=3.5mol×40%=1.4mol,在反应中,物质的量的该变量之比等于计量数之比,故S2的物质的量的该变量△n=0.7mol,故反应速率v(S2)=v=$\frac{\frac{△n}{V}}{△t}$=$\frac{\frac{0.7mol}{2L}}{7min}$=0.05mol/(L•min),
故答案为:0.05 mol L-1min -1
②据图可知,温度越高,H2S的平衡转化率越高,则说明升高温度,反应H2S=H2(g)+$\frac{1}{2}$S2(g)平衡右移,反应吸热,故反应S2(g)+2H2(g)=2H2S(g)放热,即△H<0,故答案为:<;
(2)①由图可知温度相同时,到达平衡时,压强为P1的CH4转化率高,平衡向正反应方向移动,反应为气体体积增大的反应,增大压强平衡向体积减小的方向移动,即P1<P2;故答案为:<;
②100℃时,将3mol CH4和4mol H2O通入容积为100L的恒容密闭容器中,CO(g)和H2O(g))的浓度相同,
               CH4(g)+H2O(g)?CO(g)+3H2(g)
起始量(mol/L) 0.03    0.04       0        0
变化量(mol/L) 0.02    0.02     0.02     0.06
平衡量(mol/L) 0.01    0.02     0.02      0.06
平衡常数K=$\frac{c(CO)c{\;}^{3}(H{\;}_{2})}{c(CH{\;}_{4})c(H{\;}_{2}O)}$=$\frac{0.02×0.06{\;}^{3}}{0.01×0.02}$=0.0216;
故答案为:0.0216.

点评 本题综合考查化学平衡的计算,为高考常见题型和高频考点,侧重考查学生的分析、计算能力,涉及利用盖斯定律来解题和反应速率的求算、平衡的计算以及利用温度对平衡转化率的影响来分析反应吸热还是放热等,难度不大.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:选择题

14.甲烷分子中的4个氢原子全部被苯基取代,所得物质的分子结构如图所示,对该物质的描述不正确的是(  )
A.其分子式为C25H20
B.分子内的所有碳原子不可能共平面
C.该物质光照下可和氯气发生反应
D.该物质在Fe粉催化下可和液溴发生反应

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

17.硝基苯是重要的化工原料,用途广泛.实验室用如图装置制备硝基苯,步骤如下:
①取100mL烧杯,用20mL浓硫酸与18mL浓硝酸配制混和酸,加入恒压滴液漏斗中,把18mL苯加入三颈烧瓶中.
②向室温下的苯中逐滴加入混酸,边滴边搅拌,混和均匀.
③在50~60℃下发生反应,直至反应结束.
④分离出产物后,依次用蒸馏水和100mL 0.1mol/L的Na2CO3溶液洗涤,最后再用蒸馏水洗涤得到粗产品.
⑤向粗产品加入固体D除去水,然后蒸馏,得到纯净的硝基苯.
可能用到的有关数据列表如下
物 质熔点/℃沸点/℃密度(20℃)/g•cm-3溶解性
5.5800.88微溶于水
硝基苯5.7210.91.205难溶于水
浓硝酸-831.4易溶于水
浓硫酸-3381.84易溶于水
(1)写出该反应的化学方程式
(2)配制混酸应在烧杯中先加入浓硝酸,长玻璃管作用是冷凝回流,恒压滴液漏斗的优点是使混合酸能顺利流下.
(3)反应温度控制在50~60℃的原因是防止副反应发生,反应结束后产物在下层(填“上”或者“下”),分离混酸和产品的操作名称是分液.
(4)实验前要配制100mL 0.1mol/L的Na2CO3溶液,需要用到的玻璃仪器除了玻璃棒、烧杯还有100ml容量瓶、胶头滴管.
(5)用Na2CO3溶液洗涤之后再用蒸馏水洗涤时,怎样验证液体已洗净?取最后一次洗涤液,向溶液中加入氯化钙,无沉淀生成,说明已洗净.
(6)固体D的名称为无水氯化钙.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

14.用菱锰矿(主要含MnCO3、FeCO3、Al2O3、SiO2)制备MnSO4•H2O的工艺流程如下:
Ⅰ.向菱锰矿中加入过量稀H2SO4,过滤;
Ⅱ.向滤液中加入过量MnO2,过滤;
Ⅲ.调节滤液pH=a,过滤;
Ⅳ.浓缩、结晶、分离、干燥得到产品;
Ⅴ.检验产品纯度.
(1)步骤Ⅰ中,滤渣的主要成分是SiO2
(2)将MnO2氧化Fe2+的离子方程式补充完整:
1MnO2+2Fe2++4H+=1  Mn2++2Fe3++2H2O
(3)与选用Cl2作为氧化剂相比,MnO2的优势主要在于:原料来源广、成本低、可避免环境污染、不会引入Cl-,使制得的MnSO4?H2O产品更纯净.
(4)已知:
生成氢氧化物沉淀的pH
Al(OH)3Fe(OH)2Fe(OH)3Mn(OH)2
开始沉淀时3.46.31.57.6
完全沉淀时4.78.32.810.2
注:金属离子的起始浓度为0.1mol/L
步骤Ⅲ中a的取值范围是4.7≤a<7.6.
(5)步骤Ⅴ,通过测定产品中锰元素的质量分数来判断产品纯度.
已知一定条件下,MnO4-与Mn2+反应生成MnO2.取x g产品配成溶液,用0.1mol/L KMnO4溶液滴定,消耗KMnO4溶液y mL,产品中锰元素的质量分数为$\frac{1.5y×1{0}^{-4}×55}{x}$.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

1.高纯六水氯化锶晶体(SrCl2•6H2O)具有很高的经济价值,工业上用w kg难溶于水的碳酸锶(SrCO3)为原料(含少量钡和铁的化合物等),共制备高纯六水氯化锶晶体(a kg)的过程为:

已知:Ⅰ.SrCl2•6H2O晶体在61℃时开始失去结晶水,100℃时失去全部结晶水.
Ⅱ.有关氢氧化物开始沉淀和完全沉淀的pH表:
氢氧化物Fe(OH)3Fe(OH)2
开始沉淀的pH1.56.5
沉淀完全的pH3.79.7
(1)操作①加快反应速率的措施有加热、充分搅拌、适当增加盐酸浓度等 (写一种).操作①中盐酸能否改用硫酸,其理由是:不能,否则会大量生成硫酸锶的沉淀,减少产物生物
(2)酸性条件下,加入30% H2O2溶液,将Fe2+氧化成Fe3+,其离子方程式为2Fe2++H2O2+2H+=2Fe3++2H2O.
(3)在步骤②-③的过程中,将溶液的pH值由1调节至4时,宜用的试剂为B.
A.氨水      B.氢氧化锶粉末     C. 氢氧化钠     D.碳酸钠晶体
(4)操作③中所得滤渣的主要成分是Fe(OH)3、BaSO4 (填化学式).
(5)工业上完成操作③常用的设备有:B
A分馏塔    B 离心机    C  热交换器    D  反应釜
(6)工业上用热风吹干六水氯化锶,适宜的温度是B
A.40~50℃B.50~60℃C.60~70℃D.80℃以上.
(7)已知工业流程中锶的利用率为90%根据以上数据计算工业碳酸锶的纯度:$\frac{1480a}{267W×9}$×100%.

查看答案和解析>>

科目:高中化学 来源: 题型:填空题

11.化合物A、B是中学常见的物质,其阴、阳离子只能从表中选择:
阳离子K+、Na+、Fe2+、Ba2+、NH${\;}_{4}^{+}$、Ca2+
阴离子OH-、NO${\;}_{3}^{-}$、I-、HCO${\;}_{3}^{-}$、AlO${\;}_{2}^{-}$、HSO${\;}_{4}^{-}$
(1)若A、B的水溶液均为无色,且A的水溶液呈强酸性,B的水溶液呈强碱性.混合后产生不溶于稀盐酸的白色沉淀及能使湿润的红色石蕊试纸变蓝色的气体.
①B的化学式为Ba(OH)2
②A、B溶液混合加热反应的离子方程式H++SO42-+NH4++Ba2++2OH-$\frac{\underline{\;\;△\;\;}}{\;}$BaSO4↓+NH3↑+2H2O.
(2)若A的水溶液呈浅绿色,B的水溶液无色且其焰色反应为黄色.向A的水溶液中加入稀盐酸无明显现象,再加入B后溶液变黄,但A、B的水溶液混合亦无明显变化.则
①A的化学式为FeI2
②经分析上述过程中溶液变黄的原因可能有两种(用离子方程式表示)
Ⅰ8H++2NO3-+6I-=2NO↑+3I2+4H2O;Ⅱ8H++2NO3-+6I-=2NO↑+3I2+4H2O和4H++NO3-+3Fe2+=NO↑+3Fe3++2H2O.
③请用一简易方法证明上述溶液变黄的原因取少量变黄溶液于试管中,滴加几滴KSCN溶液,若变红则Ⅱ合理(其他合理亦可).

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

18.25℃时,下列有关溶液的说法正确的是(  )
A.难溶电解质Ag2SO4的饱和溶液中,若c(SO42-)=amol•L-1,则Ksp(Ag2SO4)=2a3
B.某氨水的pH=11,将此溶液稀释10倍后,溶液的pH<10
C.Ka(HCN)<Ka(CH3COOH),说明相同温度下同浓度的HCN溶液的酸性比CH3COOH溶液的强
D.pH=8的NaHCO3溶液中:c(Na+)>c(HCO3-)>c(OH-)>c(H2CO3)>c(CO32-

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

15.下列有关说法正确的是(  )
A.CH2═CH2与CH3CH2OH均可以使KMnO4(H+)褪色,且褪色原理相同
B.乙酸乙酯的制取中,水浴加热的目的有:加快化学反应速率,同时使产物分离,平衡正向移动
C.等质量的CH3CH2OH与CH3COOH,均能与足量的金属钠发生取代反应,前者反应速率较后者慢,且生成等物质量的H2
D.在一溴乙烷中加入NaOH和CH3CH2OH,加热,加入HNO3酸化的AgNO3,出现淡黄色沉淀,说明溴乙烷发生了水解反应

查看答案和解析>>

科目:高中化学 来源: 题型:推断题

16.X、Y、Z、W四种元素原子序数依次增大且均小于36.Z基态原子最外层电子数是其内层电子总数的3倍,Y基态原子是同周期元素中未成对电子数最多的原子,X分别与Y、Z元素组合均可形成10电子微粒,W基态原子有10个价电子.回答下列问题(以下问题均以推知元素符号作答):
(1)若YX3与X2Z、YX2-与ZX-、Y3-与Z2-性质相似,请写出Mg(YX22在一定条件下分解的化学方程式:3Mg(NH22═Mg3N2+4NH3↑.
(2)已知0℃时,X2Z的密度为a g•cm-3,其晶胞中X2Z分子的空间排列方式与金刚石晶胞类似,相似的原因是水中的O和金刚石中的C都是sp3杂化,且水分子间的氢键具有方向性,每个水分子可与相邻的4个水分子形成氢键.两个X2Z分子间的最近距离为$\frac{\sqrt{3}}{4}$×$\root{3}{\frac{144}{a{N}_{A}}}$×1010pm(用a和NA表示).已知X2Z的升华热是51kJ•mol-1,除氢键外,X2Z分子间还存在范德华力(11kJ•mol-1),则X2Z晶体中氢键的“键能”是20kJ•mol-1
(3)WZ是一种功能材料,已被广泛用于电池电极、催化剂、半导体、玻璃染色剂等方面.工业上常以W(YZ32•6X2Z和尿素[CO(NH22]为原料制备.
①W2+的基态核外电子排布式为1s22s22p63s23p63d8,其核外电子有26种运动状态.
②尿素分子中碳原子的杂化方式为sp2杂化,1mol尿素分子中含有的σ键数目为7×6.02×1023
③YZ3-的空间构型为平面正三角形.
④WZ晶体的结构与NaCl相同,但天然的和绝大部分人工制备的晶体都存在各种缺陷,例如在某种WZ晶体中就存在如图所示的缺陷:一个W2+空缺,另有两个W2+被两个W3+所取代.其结果晶体仍呈电中性,但化合物中W和Z的比值却发生了变化.经测定某样品中W3+与W2+的离子数之比为6:91.若该晶体的化学式为WxZ,则x=0.97.

查看答案和解析>>

同步练习册答案