分析 流程分析含CN-废水调整溶液PH加入NaClO溶液,氧化CN-离子反应生成CNO-的废水,含Cr2O72-的废水调整溶液PH加入Na2S2O3发生氧化还原反应得到含硫酸根离子的废水,和含CNO-的废水继续处理得当待测水样;
(1)步骤②中,CN-被ClO-氧化为CNO-,则因为是在碱性环境中,故ClO-只能被还原为Cl-,结合电荷守恒和原子守恒书写离子方程式;
(2)根据0.4 mol Cr2O72-等转化为Cr3+即可计算出转移电子的物质的量;
(3)加入熟石灰进一步处理,调节废水pH,使其转化成Cr(OH)3沉淀除去;
(4)反应后测得溶液pH=7,则可推知NaCN过量,根据电荷守恒和物料守恒即可计算出CN-和HCN的浓度,进而计算出Ka﹦(100a-1)×10-7 mol•L-1;
a、溶液中存在电荷守恒,阴阳离子电荷总数相同,电性相反;
b、溶液中存在物料守恒,浓度均为0.1mol•L-1的NaCN、HCN溶液等体积混合后,溶液中钠离子物质的量的2倍等于HCN和CN-物质的量总和;
c、混合后得溶液中c(HCN)=0.05 mol•L-1,c(NaCN)=0.05 mol•L-1,溶液呈碱性,说明NaCN水解程度大于HCN的电离程度,水解促进水的电离;
d、溶液混合后形成的是缓冲溶液,加入少量酸或碱,溶液酸碱性变化不大;
(5)平衡常数=$\frac{生成物平衡浓度幂次方乘积}{反应物平衡浓度幂次方乘积}$;可逆反应AgCl (s)+2NH3(aq)=Ag(NH3)2+(aq)+Cl-(aq)的化学平衡常数 K=$\frac{c(C{l}^{-})c(Ag(N{H}_{3}{)_{2}}^{+})}{{c}^{2}(N{H}_{3})}$=$\frac{c(C{l}^{-})c(Ag(N{H}_{3}{)_{2}}^{+})}{{c}^{2}(N{H}_{3})}$×$\frac{c(A{g}^{+})}{c(A{g}^{+})}$=Ksp(AgCl)×K稳计算,;1L 1mol/L氨水中最多可以溶解AgCl可以依据化学平衡常数计算;
解答 解:(1)碱性条件下,CN-离子与NaClO发生氧化还原反应生成CNO-、Cl-离子,离子反应为:CN-+ClO-═CNO-+Cl-;
故答案为:CN-+ClO-═CNO-+Cl-;
(2)根据0.4 mol Cr2O72-等转化为Cr3+,铬元素化合价降低3价,0.4molCr2O72-共得到了0.4×(2×3)mol=2.4mol;
故答案为:2.4;
(3)含Cr3+废水可以加入熟石灰进一步处理,目的是调节废水pH,使其转化成Cr(OH)3沉淀除去;
故答案为:调节废水pH,使其转化成Cr(OH)3沉淀除去;
(4)由于反应后测得溶液pH=7,当a=0.01时,恰好反应,生成了氰化氢溶液,溶液显示酸性,故氰化钠应该多些,故a>0.01; 根据电荷守恒:c(Na+)+c(H+)=c(OH-)+c(CN-)+c(Cl-),PH=7,c(H+)=c(OH-),c(CN-)=c(Na+)-c(Cl-)=$\frac{a}{2}$mol/L-$\frac{0.01}{2}$mol/L;
再根据物料守恒:c(CN-)+c(HCN)=c(Na+)=$\frac{a}{2}$mol/L;Ka﹦$\frac{c({H}^{+})c(C{N}^{-})}{c(HCN)}$=$\frac{(\frac{a}{2}mol/L-\frac{0.01}{2}mol/L)×1{0}^{-7}mol/L}{\frac{0.01}{2}mol/L}$=(a-0.01)×10-5 mol•L-1,所以Kh=$\frac{Kw}{Ka}$=$\frac{1×1{0}^{-14}}{(a-0.01)×1{0}^{-5}}$=$\frac{1{0}^{-9}}{a-0.01}$;
若25℃时将浓度均为0.1mol•L-1的NaCN、HCN溶液等体积混合后,混合后得溶液中c(HCN)=0.05 mol•L-1,c(NaCN)=0.05 mol•L-1,溶液呈碱性,说明NaCN水解程度大于HCN的电离程度;
a、据电荷守恒可知c(H+)+c(Na+)=c(CN-)+c(OH-),此溶液一定有c(Na+)+c(H+)=c(OH-)+c(CN-),故a正确;
b.由物料守恒可知c(HCN)+c(CN-)=0.1mol•L-1,所以c(HCN)+c(CN-)=2c(Na+),故b错误;
c.若25℃时将浓度均为0.1mol•L-1的NaCN、HCN溶液等体积混合后,混合后得溶液中c(HCN)=0.05 mol•L-1,c(NaCN)=0.05 mol•L-1,溶液呈碱性,说明NaCN水解程度大于HCN的电离程度,混合溶液中水的电离程度一定大于该温度下纯水的电离程度,故c正确;
d.若25℃时将浓度均为0.1mol•L-1的NaCN、HCN溶液等体积混合后形成缓冲溶液,此溶液加入少量氢氧化钠抑制水解,促进电离,加入盐酸抑制电离促进水解,溶液酸碱性变化不大,所以溶液的pH变化不大,故d正确;
故答案为:$\frac{1{0}^{-9}}{a-0.01}$;b;
(5)Ag+(aq)+2NH3(aq)=Ag(NH3)2+(aq),该反应平衡常数的表达式=$\frac{c(Ag(N{H}_{3}{)_{2}}^{+})}{c(A{g}^{+}){c}^{2}(N{H}_{3})}$,可逆反应AgCl (s)+2NH3(aq)=Ag(NH3)2+(aq)+Cl-(aq)的化学平衡常数 K=$\frac{c(C{l}^{-})c(Ag(N{H}_{3}{)_{2}}^{+})}{{c}^{2}(N{H}_{3})}$=$\frac{c(C{l}^{-})c(Ag(N{H}_{3}{)_{2}}^{+})}{{c}^{2}(N{H}_{3})}$×$\frac{c(A{g}^{+})}{c(A{g}^{+})}$=Ksp(AgCl)×K稳=1.45×10-10×1.10×107=1.6×10-3,设溶解的AgCl物质的量为x,反应前后系数相同,可以用物质的量代替平衡浓度计算平衡常数,
AgCl (s)+2NH3(aq)=Ag(NH3)2+(aq)+Cl-(aq),
依据平衡常数=$\frac{c(C{l}^{-})c(Ag(N{H}_{3}{)_{2}}^{+})}{{c}^{2}(N{H}_{3})}$=$\frac{{x}^{2}}{(1-2x)^{2}}$=1.595×10-3,
1-2x≈1,计算得到x=0.04mol,
故答案为:1.6×10-3; 0.04;
点评 本题以工艺流程为载体,侧重化学基本概念、基本理论,考查了氧化还原反应及离子方程式的书写,水溶液中的离子平衡、离子浓度、电离常数、沉淀溶解平衡等电解质溶液的相关知识.考查学生的知识运用能力、灵活分析处理实际问题的能力,题目难度中等.
科目:高中化学 来源: 题型:选择题
A. | 2SO2+O2$\frac{\underline{\;500℃\;}}{V_{2}O_{5}}$2SO3△H=-196.6KJ•mol-1 | |
B. | C(s)+O2(g)═CO2 (g)△H=+393.5KJ•mol-1 | |
C. | 2H2(g)+O2(g)═2H2O(l)△H=-571kJ | |
D. | H2(g)+$\frac{1}{2}$O2(g)═H2O(l)△H=-285.8KJ•mol-1 |
查看答案和解析>>
科目:高中化学 来源: 题型:填空题
查看答案和解析>>
科目:高中化学 来源: 题型:选择题
A. | 6:3:2 | B. | 1:2:3 | C. | 3:2:1 | D. | 1:1:1 |
查看答案和解析>>
科目:高中化学 来源: 题型:实验题
查看答案和解析>>
科目:高中化学 来源: 题型:解答题
查看答案和解析>>
科目:高中化学 来源: 题型:选择题
序号 | 硫酸的体积/mL | 锌的质量/g | 锌的状态 | 温度/℃ | 完全溶于酸的时间/s | 生成硫酸锌的质量/g |
1 | 50.0 | 2.0 | 颗粒 | 25 | 70 | m1 |
2 | 50.0 | 2.0 | 颗粒 | 35 | 35 | m2 |
3 | 50.0 | 2.0 | 粉末 | 25 | t1 | 5.0 |
4 | 50.0 | 6.0 | 粉末 | 25 | t2 | 14.9 |
5 | 50.0 | 8.0 | 粉末 | 25 | t3 | 19.3 |
6 | 50.0 | 10.0 | 粉末 | 25 | t4 | m3 |
A. | t1>70 | |
B. | m3=19.3 | |
C. | 实验1、实验2与实验3探究的是温度对化学反应速率的影响 | |
D. | 无法计算出硫酸的物质的量浓度 |
查看答案和解析>>
科目:高中化学 来源: 题型:选择题
A. | 0.4 mol•L-1•min-1 | B. | 0.6 mol•L-1•min-1 | ||
C. | 0.2 mol•L-1•min-1 | D. | 无法计算 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com