精英家教网 > 高中化学 > 题目详情
15.Ⅰ、某小组间学设想用如图所示装置电解硫酸钾溶液来制取氧气、氢气、硫酸和氢氧化钾.
(1)X极与电源的正(填“正”或“负”)极相连,氢气从C(选填“A”、“B”、“C”或“D”)口导出.
(2)离子交换膜只允许一类离子通过,则M为阴离子(填“阴离子”或“阳离子”,下同)交换膜,N为阳离子交换膜.
(3)若将制得的氢气、氧气和氢氧化钾溶液组合为氢氧燃料电池(石墨为电极),则电池负极的电极反应式为H2-2e-+2OH-═2H2O.
Ⅱ、北京奥运会“祥云”火炬燃料是丙烷(C3H8),亚特兰大奥运会火炬燃料是丙烯(C3H6).
(1)丙烷脱氢可得丙烯.
已知:C3H8(g)=CH4(g)+HC≡CH(g)+H2(g)△H1=156.6kJ•mol-1
     CH3CH═CH2(g)=CH4(g)+HC≡CH(g)△H2=32.4kJ•mol-1
则相同条件下,反应C3H8(g)=CH3CH═CH2(g)+H2(g)的△H=+124.2kJ•mol-1
(2)以丙烷为燃料制作新型燃料电池,电池的正极通入O2和CO2,负极通入丙烷,电解质是熔融的碳酸盐.电池反应方程式为C3H8+5O2═3CO2+4H2O;放电时CO32-移向电池的负(选填“正”或“负”)极.
(3)碳氢化合物完全燃烧生成CO2和H2O,常温常压下,空气中的CO2溶于水,达到平衡时,溶液的pH=5.60,[H2CO3]
=1.5×10-5mol•L-1.若忽略水的电离及H2CO3的第二级电离,则H2CO3=HCO3-+H+的平衡常数K1=4.2×10-7mol•L-1(已知:10-5.60≈2.5×10-6).
(4)常温下,0.1mol•L-1NaHCO3溶液的pH大于8,则溶液中[H2CO3]>[CO32-](选填“>”“<”或“=”).

分析 Ⅰ、(1)根据加入的物质知,X电极附近生成硫酸,Y电极附近生成氢氧化钾,则X电极上氢氧根离子放电,Y电极上氢离子放电,所以X是阳极,Y是阴极,阳极与电源正极相连;阳极上生成氧气,阴极上生成氢气;
(2)电解过程中,电解质溶液中阳离子向阴极移动,阴离子向阳极移动;
(3)原电池中负极上失电子发生氧化反应;
Ⅱ、(1)依据盖斯定律结合已知热化学方程式计算得到;
(2)燃料电池中,负极电极反应式为C3H8-20e-+10CO32-=13CO2+4H2O,正极反应式为:O2+2CO2+4e-=2CO32-,电解质溶液中阴离子向负极移动;
(3)依据平衡常数概念结合平衡状态下离子浓度和同时浓度计算得到;
(4)根据NaHCO3溶液的中HCO3-的水解程度大于自身的电离程度来回答.

解答 解:Ⅰ、(1)题图中左边加入含硫酸的水,右侧加入含KOH的水,说明左边制硫酸,右边制备KOH溶液,氢氧根离子在阳极放电,同时电解后溶液呈酸性,氢离子在阴极放电,同时电解后溶液呈碱性,则X为阳极,Y为阴极,所以X连接电源正极;
Y电极上氢离子放电生成氢气,所以氢气从C口导出,
故答案为:正;C;
(2)OH-在阳极发生氧化反应,使左边溶液中H+增多,为了使溶液呈电中性,硫酸钾溶液中的SO42-通过M交换膜向左边迁移,即M为阴离子交换膜;
H+在Y极发生还原反应,使右边溶液中OH-增多,硫酸钾溶液中K+向右迁移,N为阳离子交换膜,
故答案为:阴离子;阳离子;
(3)氢氧燃料碱性电池中,通入氢气的电极是负极,负极上氢气失电子发生氧化反应,电极反应式为
H2-2e-+2OH-═2H2O,
故答案为:H2-2e-+2OH-═2H2O;
Ⅱ、(1)①C3H8(g)→CH4(g)+HC≡CH(g)+H2(g)△H1=156.6kJ•mol-1
②CH3CH=CH2(g)→CH4(g)+HC≡CH(g)△H2=32.4kJ•mol-1
依据盖斯定律①-②得到:C3H8(g)→CH3CH=CH2(g)+H2(g)△H=+124.2KJ/mol,
故答案为:+124.2;
(2)燃料电池中,负极上燃料失电子发生氧化反应,正极上氧化剂得电子发生还原反应,负极电极反应式为C3H8-20e-+10CO32-=13CO2+4H2O,正极反应式为:O2+2CO2+4e-=2CO32-,所以其电池反应式为C3H8+5O2═3CO2+4H2O,放电时,电解质中阴离子碳酸根离子向负极移动,
故答案为:C3H8+5O2═3CO2+4H2O;负;
(3)常温常压下,空气中的CO2溶于水,达到平衡时,溶液的pH=5.60,c(H+)=c(HCO3-)=10-5.6mol/L;c(H2CO3)=1.5×10-5 mol•L-1.若忽略水的电离及H2CO3的第二级电离,则H2CO3的第一级电离的平衡常数K1=$\frac{c({H}^{+})•c(HC{O}_{3}-)}{c({H}_{2}C{O}_{3})}$=$\frac{1{0}^{-5.6}×1{0}^{-5.6}}{1.5×1{0}^{-5}}$=4.2×10-7 mol•L-1,故答案为:4.2×10-7 mol•L-1
(4)因NaHCO3溶液显碱性,HCO3-的水解程度大于自身的电离程度,即NaHCO3溶液中既存在电离平衡为HCO3-?CO32-+H+,水解平衡为HCO3-+H2O?H2CO3+OH-,而HCO3-水解程度大于电离程度,
故答案为:>;因为NaHCO3溶液中既存在电离平衡:HCO3-?CO32-+H+,又存在水解平衡:HCO3-+H2O?H2CO3+OH-,而HCO3-水解程度大于电离程度.

点评 本题考查了盖斯定律的应用、原电池和电解池原理、平衡常数的计算,正确推断电解池阴阳极是解本题关键,根据加入水溶液的溶质确定电极产物,结合电极产物确定阴阳极,再结合转移电子守恒进行有关计算,难度中等.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:选择题

5.下列物质与常用危险化学品的类别不对应的是(  )
A.H2SO4----腐蚀品B.CH4---易燃液体
C.白磷---易自燃物品D.HClO---氧化剂

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

6.下列关于能源和作为能源使用的物质的叙述中,错误的是(  )
A.化石燃料蕴藏的能量来自远古时期生物体所吸收利用的太阳能
B.太阳能不能直接转化为电能
C.物质的化学能可以在不同条件下转化为热能、电能等为人类所用
D.绿色植物发生光合作用时,将太阳能转化为化学能“贮存”起来

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

3.金刚石和石墨都是碳的单质,石墨在一定条件下可以转化为金刚石.已知12g石墨完全转化为金刚石时,要吸收a kJ的能量,下列说法正确的是(  )
①石墨不如金刚石稳定
②金刚石不如石墨稳定
③等质量的石墨和金刚石完全燃烧,金刚石放出的能量多
④石墨转化为金刚石是氧化还原反应.
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

10.短周期元素A、B、C、D、E原子序数依次增大.A是周期表中原子半径最小的元素,B原子的最外层电子数等于该元素最低化合价的绝对值,C与D能形成D2C和D2C2两种化合物,而D是同周期中金属性最强的元素,E的负一价离子与C和A形成的某种化合物分子含有相同的电子数.
(1)A、C、D形成的化合物中含有的化学键类型为离子键、共价键.
(2)已知:①E-E→2E•;△H=+a kJ•mol-1
②2A•→A-A;△H=-b kJ•mol-1
③E•+A•→A-E;△H=-c kJ•mol-1(“•”表示形成共价键所提供的电子)写出298K时,A2与E2反应的热化学方程式(用化学式表示)H2(g)+Cl2(g)=2HCl(g)△H=(a+b-2c) kJ•mol-1
(3)在某温度下、容积均为2L的三个密闭容器中,按不同方式投入反应物,保持恒温恒容,使之发生反应:2A2(g)+BC(g)?X(g);△H=-d kJ•mol-1(d>0,X为A、B、C三种元素组成的一种化合物).初始投料与各容器达到平衡时的有关数据如下:
实验
初始投料2molA2、1molBC1molX4molA2、2molBC
平衡时n(X)0.5moln2n3
反应的能量变化放出Q1kJ吸收Q2kJ放出Q3kJ
体系的压强P1P2P3
反应物的转化率α1α2α3
①在该温度下,假设甲容器从反应开始到平衡所需时间为4min,则该时间段内A2的平均反应速率v(A2)=0.125mol/(L.min).
②该温度下此反应的平衡常数K的值为4.
③三个容器中的反应分别达平衡时各组数据关系正确的是ADE(填序号).
A.α12=1             B.α3<α1             C. n2<n3<1.0mol
D.P3<2P1=2P2       E. Q1+Q2=d           F.Q3=2Q1
④在其他条件不变的情况下,将甲容器的体系体积压缩到1L,若在第8min达到新的平衡时A2的总转化率为65.5%,请在图中画出第5min 到新平衡时X的物质的量浓度的变化曲线.

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

20.镍合金在工业上有着非常广泛的应用,试根据所学知识回答下列问题:
(1)基态镍原子的价电子排布式为3d84s2
(2)镍可与NH3、CN-、CO等多种微粒形成配合物.CO与N2相对分子质量相等,但CO的熔点比N2熔点高,请解释原因:N2是非极性分子,CO是极性分子,分子间作用力增大.NH3中H-N-H键角比NH4+中H-N-H键角小(填“大”或“小”),其原因是氨气分子中氮原子上有一对孤电子对,铵根离子中氮原子上没有孤电子对,排斥力小.
(3)镍可与CO形成配合物Ni(CO)m,CO分子中σ键与π键的个数比1:2;该化合物的熔点是173℃,熔融状态不导电,则该化合物属于分子晶体.
(4)NiSO4常用于电镀工业,SO42-中S原子的杂化方式为sp3杂化.
(5)已知镧镍合金是一种储氢材料,其晶胞结构如图1所示,则镧镍合金中镧原子与镍原子的原子个数比为1:5.储氢后的晶胞结构如图2所示,则储氢后晶体的密度可表示为$\frac{M}{{N}_{A}{a}^{3}}$g.cm-3.(储氢后晶体的摩尔质量为Mg/mol,任意两个距离最近的La原子之间的距离均为acm,NA表示阿伏伽德罗常数的值)

查看答案和解析>>

科目:高中化学 来源: 题型:推断题

7.CH4、NH3、H2O和HF均为含10e-的分子.
(1)C、N、O、F四种元素中,与基态C原子的核外未成对电子数相等的元素是氧(写元素名称),其基态原子的核外电子排布式为1s22s22p4
(2)C、N、O、F四种元素第一电离能由大到小的顺序是F>N>O>C(用元素符号表示).
(3)CH4、NH3和H2O分子中,从原子轨道的重叠方向来说,三种分子均含共价键类型为σ键,三种分子的中心原子的杂化轨道类型均为sp3
(4)CH4燃烧生成CO、CO2和H2O.
①在CO气流中轻微加热金属镍(Ni),生成无色挥发性液态Ni(CO)4,试推测四羧基镍的晶体类型为分子晶体.
②CO2、H20和NH3反应生成(NH4)CO3,根据电子对互斥理论知CO32-的空间构型为平面三角形.
(5)CH4、NH3、H2O和HF四种物质中沸点最高的是H2O(填化学式).
(6)SiO2的结构跟金刚石的结构相似,即SiO2的结构相当于在硅晶体结构中每个硅与硅的化学键之间插入一个O原子.观察下图金刚石的结构,分析SiO2的空间结构中,Si、O形成的最小环上O原子的数目是6.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

15.在周期表中1~36号之间的A、B、C、D、E、F六种元素,它们的原子序数依次增大,已知A与其余五种元素既不同周期也不同主族,B的一种核素在考古时常用来鉴定一些文物的年代,C元素原子的最外层有3个自旋方向相同的未成对电子,D原子核外电子有8种不同的运动状态,E元素在第四周期,E的基态原子中未成对电子数是核外电子总数的$\frac{1}{4}$,F元素位于周期表的ds区,其基态原子最外能层只有一个电子.
(1)写出基态E原子的价电子排布式3d54s1
(2)B、C、D三种元素第一电离能由小到大的顺序为C<O<N(用元素符号表示).
(3)A与C形成CA3型分子,分子中C原子的杂化类型为sp3,分子的立体结构为三角锥形;C的单质与化合物BD是等电子体,根据等电子体原理,写出化合物BD的电子式
(4)A2D的沸点在同族元素中最高,其原因是水分子之间形成氢键,导致沸点升高.A2D由液态形成晶体时密度减小(填“增大”、“不变”或“减小”),其主要原因水形成晶体时,每个水分子与4个水分子形成氢键,构成空间正四面体网状结构,水分子空间利用率低,密度反而减小(用文字叙述).
(5)已知D、F能形成一种化合物,其晶胞的结构如图所示,则该化合物的化学式为Cu2O(用元素符号表示);若相邻D原子和F原子间的距离为acm,阿伏伽德罗常数为NA,则该晶体的密度为$\frac{27\sqrt{3}}{2{a}^{3}{N}_{A}}$g•cm-3(用含a、NA的符号表示).

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

16.将如图所示实验装置的 K 闭合,下列判断正确的是(  ) 
A.Cu 电极上发生还原反应B.电子沿 Zn→a→b→Cu 路径流动
C.片刻后甲池中 c(SO42-)增大D.片刻后可观察到滤纸 b 点变红色

查看答案和解析>>

同步练习册答案