精英家教网 > 高中化学 > 题目详情
6.为探索工业废料的再利用,某化学兴趣小组设计了如图1实验流程,用含有铝、铁和铜的合金废料制取氯化铝、绿矾晶体(FeSO4•7H2O)和胆矾晶体请回答:
(1)写出步骤Ⅰ反应的离子方程式:2Al+2OH-+2H2O=2AlO2-+3H2↑.
(2)试剂X是稀硫酸.步骤Ⅰ、Ⅱ、Ⅲ中均需进行的实验操作是过滤.
(3)进行步骤Ⅱ时,该小组用如图2所示装置及试剂制取CO2并将制得的气体通入溶液A中.一段时间后,观察到烧杯中产生的白色沉淀会逐渐减少.为了避免固体C减少,可采取的改进措施是在a、b之间添加盛放饱和NaHCO3溶液的洗气瓶.
(4)由溶液E到绿矾晶体(FeSO4•7H2O),所需操作是蒸发浓缩、冷却结晶、过滤、洗涤、干燥.
(5)用固体F制备CuSO4溶液,可设计如图3三种途径:写出途径①中反应的离子方程式3Cu+2NO3-+8H+=3Cu2++2NO↑+4H2O,请选出你认为的最佳途径并说明选择的理由途径②最佳,理由是原料利用率高,环境污染小.

分析 铝、铁和铜的合金中只有金属铝可以和氢氧化钠反应,过滤后,得到溶液A含有NaAlO2,固体B为Cu和Fe.溶液A中通入过量的二氧化碳可以得到氢氧化铝沉淀与碳酸氢钠,过滤分离,得到C为Al(OH)3,D为NaHCO3溶液,C和碳酸氢钠溶液D.固体B用试剂X反应,过滤分离得到溶液E,溶液E蒸发浓缩、冷却结晶可以获得绿矾晶体,可知试剂X为稀硫酸,E为FeSO4,F为Cu,Cu转化得到硫酸铜,CuSO4溶液蒸发浓缩、冷却结晶可以获得胆矾晶体.
(1)步骤Ⅰ中铝与氢氧化钠溶液反应生成偏铝酸钠与氢气;
(3)盐酸具有挥发性,挥发出的HCl导致氢氧化铝溶液,用饱和NaHCO3溶液除去;
(4)从溶液中获得晶体,需要经过蒸发浓缩、冷却结晶、过滤等操作;
(5)途径①中Cu与混酸反应生成铜盐、NO与水;根据消耗原料用量、产物对环境污染分析判断.

解答 解:铝、铁和铜的合金中只有金属铝可以和氢氧化钠反应,过滤后,得到溶液A含有NaAlO2,固体B为Cu和Fe.溶液A中通入过量的二氧化碳可以得到氢氧化铝沉淀与碳酸氢钠,过滤分离,得到C为Al(OH)3,D为NaHCO3溶液,C和碳酸氢钠溶液D.固体B用试剂X反应,过滤分离得到溶液E,溶液E蒸发浓缩、冷却结晶可以获得绿矾晶体,可知试剂X为稀硫酸,E为FeSO4,F为Cu,Cu转化得到硫酸铜,CuSO4溶液蒸发浓缩、冷却结晶可以获得胆矾晶体.
(1)步骤Ⅰ中铝与氢氧化钠溶液反应生成偏铝酸钠与氢气,反应离子方程式为:2Al+2OH-+2H2O=2AlO2-+3H2↑,
故答案为:2Al+2OH-+2H2O=2AlO2-+3H2↑;
(2)由上述分析可知,试剂X为稀硫酸,步骤Ⅰ、Ⅱ、Ⅲ均是固体和液体的分离操作,应该是过滤,故答案为:稀硫酸;过滤;
(3)盐酸具有挥发性,挥发出的HCl导致氢氧化铝溶液,应在a、b之间添加盛放饱和NaHCO3溶液的洗气瓶,除去二氧化碳中的HCl,
故答案为:在a、b之间添加盛放饱和NaHCO3溶液的洗气瓶;
(4)从硫酸铜溶液中获得晶体,需要经过蒸发浓缩、冷却结晶、过滤、洗涤、干燥等操作,故答案为:蒸发浓缩;冷却结晶;过滤;
(5)途径①中Cu与混酸反应生成铜盐、NO与水,反应离子方程式为:3Cu+2NO3-+8H+=3Cu2++2NO↑+4H2O;
途径①产生NO,途径③中会生成二氧化硫,NO、二氧化硫均污染空气,铜不能和稀硫酸反应,但是当加热并通入空气之后,铜和氧气反应生成氧化铜,然后氧化铜会和硫酸反应生成硫酸铜,不会产生污染大气的气体,该过程原料利用率高,所以途径②最佳,
故答案为:3Cu+2NO3-+8H+=3Cu2++2NO↑+4H2O;途径②最佳,理由是原料利用率高,环境污染小.

点评 本题考查实验制备方案、物质的分离和提纯、对方案的分析评价等,关键是理解工艺流程原理,是对学生综合能力的考查,题目难度中等.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:填空题

16.水是生命之源,它与我们的生活密切相关.在化学实验和科学研究中,水也是一种常用的试剂.
(1)水分子中氧原子在基态时核外电子排布式为1s22s22p4
(2)写出与H2O分子互为等电子体的微粒H2S、NH2-(填2种).
(3)水分子在特定条件下容易得到一个H+,形成水合氢离子(H3O+).下列对上述过程的描述不合理的是A.
A.氧原子的杂化类型发生了改变       B.微粒的形状发生了改变
C.微粒的化学性质发生了改变         D.微粒中的键角发生了改变
(4)下列是钠、碘、金刚石、干冰、氯化钠晶体的晶胞图(未按顺序排序).与冰的晶体类型相同的是BC(请用相应的编号填写)

(5)在冰晶体中,每个水分子与相邻的4个水分子形成氢键(如图所示),已知冰的升华热是51kJ/mol,除氢键外,水分子间还存在范德华力(11kJ/mol),则冰晶体中氢键的“键能”是20kJ/mol.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

17.关于原电池的下列说法中,正确的是(  )
A.化学性质较活泼的金属为负极B.在正极上发生氧化反应
C.在外电路,电子流出的极为正极D.是由电能转化为化学能的装置

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

14.二甲醚(CH3OCH3)在未来可能替代柴油和液化气作为洁净液体燃料使用.工业上以CO和H2为原料生产CH3OCH3的新工艺主要发生三个反应:
①CO(g)+2H2(g)?CH3OH(g)△H1=-91kJ•mol-1
②2CH3OH(g)?CH3OCH3(g)+H2O(g)△H2=-24kJ•mol-1
③CO(g)+H2O(g)?CO2(g)+H2(g)△H3=-41kJ•mol-1
回答下列问题:
(1)新工艺的总反应为3CO(g)+3H2(g)?CH3OCH3(g)+CO2(g)△H该反应△H=-247KJ•mol-1,平衡常数表达式K=$\frac{c(CH{\;}_{3}OCH{\;}_{3})•c(CO{\;}_{2})}{c{\;}^{3}(CO)•c{\;}^{3}(H{\;}_{2})}$.
(2)增大压强,CH3OCH3的产率增大(填“增大”、“减小”或“不变”).
(3)原工艺中反应①和反应②分别在不同的反应器中进行,无反应③发生.新工艺中反应③的发生提高了CH3OCH3的产率,原因是反应③消耗了反应②中的产物H2O,使反应②的化学平衡向正反应方向移动,从而提高CH3OCH3的产率.
(4)为了寻找合适的反应温度,研究者进行了一系列试验,每次试验保持原料气组成、压强、反应时间等因素不变,试验结果如图.CO转化率随温度变化的规律是温度低于240℃时,CO的转化率随着温度的升高而增大;温度高于240℃时,CO的转化率随着温度的升高而减小,其原因是在较低温时,各反应体系均未达到平衡,CO的转化率主要受反应速率影响,随着温度的升高反应速率增大,CO的转化率也增大;在较高温时,各反应体系均已达到平衡,CO的转化率主要受反应限度影响,随着温度的升高平衡向逆反应方向移动,CO的转化率减小.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

1.请你利用所学反应原理知识解决下列问题:
(1)若已知两个反应:
①C(s)+2H2(g)=CH4(g)△H1=a kJ•mol-1
②C(s)+$\frac{1}{2}$O2(g)=CO(g)△H2=b kJ•mol-1
则2CH4(g)+O2(g)=2CO(g)+4H2(g)△H=2(b-a)kJ•mmol-1(用含a、b的式子表示);
(2)碱性镁锰干电池是新开发的一种干电池,比普通锌锰干电池具有更加优越的性能,具有较大应用前景,其工作时总反应为:Mg+2MnO2+H2O=Mg(OH)2+Mn2O3;则工作时,正极发生还原反应(填反应类型),写出负极的电极反应式:Mg+2OH--2e-=Mg(OH)2
(3)在一定温度下1L的密闭容器放入足量草酸钙(固体所占体积忽略不计)发生反应:CaC2O4(s)═CaO(s)+CO(g)+CO2(g),若前5min 内生成CaO的质量为11.2g,则该段时间内v(CO)=0.04mol•L-1•min-1;若某时刻达到平衡时c(CO2)=c;t0时刻,将容器体积缩小为原来的一半并固定不变,在t1时刻再次达到平衡,请在图中画出t0以后此体系中CO2的浓度随时间变化的图象;
(4)某温度下数据:草酸(H2C2O4)的K1=5.4×10-2,K2=5.4×10-5;醋酸的K=1.75×10-5;碳酸的 K1=4.2×10-7,K2=4.5×10-11;Ksp(CaC2O4)=5.0×10-9;Ksp(CaCO3)=2.5×10-9
①用醋酸溶液鉴别CaC2O4和CaCO3两种白色固体的实验现象是一种固体溶解同时产生气泡逸出,另一种固体无现象;
②向0.6mol/L的Na2CO3溶液中加入足量 CaC2O4粉末后(忽略溶液体积变化),充分搅拌,发生反应:CO32-(aq)+CaC2O4(s)?CaCO3(s)+C2O42-(aq),静置后沉淀转化达到平衡,求此时溶液中的c(C2O42-)(不考虑其他诸如水解之类副反应,写出计算过程).

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

11.X、Y、Z、W、R、Q为前30号元素,且原子序数依次增大.X是所有元素中原子半径最小的,Y有三个能级,且每个能级上的电子数相等,Z原子单电子数在同周期元素中最多,W与Z同周期,第一电离能比Z的低,R与Y同一主族,Q的最外层只有一个电子,其他电子层电子均处于饱和状态.请回答下列问题:
(1)R核外电子排布式为1s22s22p63s23p2
(2)X、Y、Z、W形成的有机物YW(ZX22中Y、Z的杂化轨道类型分别为sp2、sp3,ZW3-离子的立体构型是V形.
(3)Y、R的最高价氧化物的沸点较高的是SiO2(填化学式),原因是SiO2为原子晶体,CO2为分子晶体.
(4)将Q单质的粉末加入到ZX3的浓溶液中,并通入W2,充分反应后溶液呈深蓝色,该反应的离子方程式为2Cu+8NH3+O2+2H2O=2[Cu(NH34]2++4OH-
(5)W和Na的一种离子化合物的晶胞结构如图,该离子化合物为Na2O(填化学式).Na+的配位数为4,距一个阴离子周围最近的所有阳离子为顶点构成的几何体为立方体.已知该晶胞的密度为ρg•cm-3,阿伏加德罗常数为NA,则两个最近的W离子间距离为$\frac{\sqrt{2}}{2}$$\root{3}{\frac{248}{ρ{N}_{A}}}$×10-7nm.(用含ρ、NA的计算式表示)

查看答案和解析>>

科目:高中化学 来源: 题型:填空题

18.从废钒催化剂(主要成分为V2O5、VOSO4、K2SO4、SiO2等)中回收V2O5的一种工艺流程示意图如下,请回答下列问题:

(1)步骤①中废渣的主要成分是SiO2,③中X试剂为H2SO4
(2)②、③的变化过程可简化为R2(SO4n (水层)+2nHA(有机层)?2RAn(有机层)+nH2SO4(水层)(R表示VO2+,HA表示有机萃取剂).为提高②中萃取百分率,应采取的措施是加入碱中和硫酸使平衡正移.
(3)请完成④中反应的离子方程式:
ClO3-+6VO2++6H+═6VO3++1Cl-+H2O.
(4)25℃时,取样进行试验分析,得到钒沉淀率和溶液pH之间关系如下表:
pH1.31.41.51.61.71.81.92.02.1
钒沉淀率/%88.194.896.598.098.898.896.493.189.3
结合上表,在实际生产时⑤中加入氨水,调节溶液的最佳pH值为1.7~1.8.
(5)该工艺流程中,可以循环利用的物质有有机萃取剂、氨气.

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

16.某混合气体由两种烃等体积分数组成,标准状况下1.12L该混合气体在足量氧气中完全燃烧.若将产物通入足量澄清石灰水,得到的白色沉淀质量为7.5g;若用足量碱石灰吸收燃烧产物,增重5.1g.通过计算推断混合气体由哪两种烃组成.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

17.某元素最高价氧化物对应水化物的化学式为H2XO3,这种元素的气态氢化物的化学式是(  )
A.HXB.XH4C.XH3D.H2X

查看答案和解析>>

同步练习册答案