相关习题
 0  160114  160122  160128  160132  160138  160140  160144  160150  160152  160158  160164  160168  160170  160174  160180  160182  160188  160192  160194  160198  160200  160204  160206  160208  160209  160210  160212  160213  160214  160216  160218  160222  160224  160228  160230  160234  160240  160242  160248  160252  160254  160258  160264  160270  160272  160278  160282  160284  160290  160294  160300  160308  203614 

科目: 来源: 题型:实验题

16.科学家利用“组合转化”等技术对CO2进行综合利用.如用H2和CO2在一定条件下可以合成乙烯:
6H2(g)+2CO2(g)$\frac{\underline{\;催化剂\;}}{\;}$C2H4 (g)+4H2O(g)△H=a kJ/mol
(1)已知:①H2和C2H4的燃烧热分别为285.8kJ/mol和1411kJ/mol
②H2O(g)═H2O(l)△H=-44kJ/mol,则a=-127.8kJ/mol.
(2)不同温度对CO2的转化率及催化剂的效率影响如图1所示,下列有关说法错误的是①②④(填序号).

①M点的速率最大
②温度低于250℃时,随温度升高乙烯的产率增大
③M点时平衡常数比N点时平衡常数大
④为提高 CO2的转化率应在尽可能低的温度下进行反应
(3)若在密闭容器中充入体积比为 3:1的H2和CO2,则图1中M点时,产物C2H4的体积分数为7.7%;若要进一步提高乙烯的体积分数,可采取的措施有增大压强.
(4)如图2,利用高温电解技术可将CO2转化为高热值的燃料CO气体.
①电极a发生的反应类型是还原(填“氧化”或“还原”)反应.
②高温电解的总反应的化学方程式为2CO2$\frac{\underline{\;通电\;}}{\;}$2CO+O2

查看答案和解析>>

科目: 来源: 题型:填空题

15.研究表明,化学反应的焓变与反应物和生成物的键能有关.所谓键能就是:在101.3kPa、298K时,断开1mol气态AB为气态A、气态B时过程的焓变,用△H298(AB)表示;断开化学键时△H>0[如H2(g)═2H(g)△H=+436kJ•mol-1],形成化学键时△H<0[如2H(g)═H2(g)△H=-436kJ•mol-1].
已知:H2(g)+Cl2(g)═2HCl(g)△H=-185kJ•mol-1
△H298(H2)=+436kJ•mol-1,△H298(Cl2)=+247kJ•mol-1
则△H298(HCl)=+434KJ/mol.

查看答案和解析>>

科目: 来源: 题型:实验题

14.工业制硫酸的过程中利用反应2SO2(g)+O2(g)$?_{△}^{催化剂}$2SO3(g);△H<0,将SO2转化为SO3,尾气SO2可用NaOH溶液进行吸收.请回答下列问题:
(1)一定条件下,向一带活塞的密闭容器中充入2mol SO2和1mol O2发生反应,则下列说法正确的是DE
A.若反应速率v(SO2)﹦v(SO3),则可以说明该可逆反应已达到平衡状态
B.保持温度和容器体积不变,充入2mol N2,化学反应速率加快
C.平衡后仅增大反应物浓度,则平衡一定右移,各反应物的转化率一定都增大
D.平衡后移动活塞压缩气体,平衡时SO2、O2的百分含量减小,SO3的百分含量增大
E.保持温度和容器体积不变,平衡后再充入2mol SO3,再次平衡时SO2的百分含量比原平衡时SO2的百分含量小
F.平衡后升高温度,平衡常数K增大
(2)将一定量的SO2(g)和O2(g)分别通入到体积为2L的恒容密闭容器中,在不同温度下进行反应得到如表中的两组数据:
实验编号温度/℃起始量/mol平衡量/mol达到平衡所需时间/min
SO2O2SO2O2
1T142x0.86
2T2420.4y9
①实验1从开始到反应达到化学平衡时,v(SO2)表示的反应速率为0.2 mol•L-1•min-1
②T1>T2,(选填“>”、“<”或“=”),实验2中达平衡时 O2的转化率为90%;
(3)尾气SO2用NaOH溶液吸收后会生成Na2SO3.现有常温下0.1mol/L Na2SO3溶液,实验测定其pH约为8,完成下列问题:
①用离子方程式表示该溶液呈碱性的原因:SO32-+H2O?HSO3-+OH-
②该溶液中c(OH-)=c(H+)+c(HSO3-)+2c(H2SO3)(用溶液中所含微粒的浓度表示).
(4)如果用含等物质的量溶质的下列各溶液分别来吸收SO2,则理论吸收量由多到少的顺序是B>C=D>A
A.Na2CO3        B.Ba(NO32            C.Na2S                  D.酸性KMnO4

查看答案和解析>>

科目: 来源: 题型:计算题

13.在373k时把11.5g N2O4气体通入体积为500ml的真空容器中,立即出现红棕色.反应进行到2 s 时,NO2的含量为0.01 mol.进行到60 s 时达到平衡,此容器内混合气体的密度是氢气密度的28.75倍,则
(1)开始2 s内以N2O4表示的化学反应速率为多少?
(2)达到平衡时,体系的压强为开始的多少倍?
(3)达到平衡时,体系中N2O4的物质的量为多少?
(4)N2O4的平衡转化率为多少?

查看答案和解析>>

科目: 来源: 题型:实验题

12.甲醇和乙醇是重要的化工原料,也是清洁的能源.
(1)工业上利用乙酸甲酯和氢气加成制备乙醇的技术比较成熟.主要反应如下:
反应①:CH3COOCH3(g)+2H2(g)?CH3OH(g)+C2H5OH(g)△H1
反应②:CH3COOCH3(g)+C2H5OH(g)?CH3COOC2H5(g)+CH3OH(g)△H2>0
反应③:C2H5OH(g)?CH3CHO(g)+H2(g)△H3>0
①分析增大压强对制备乙醇的影响增大压强,也能提高反应速率.反应①为气体分子数减小的反应,反应②气体分子数不变,反应③为气体分子数变大的反应,增大压强反应①平衡正向移动,反应②平衡不移动,反应③平衡逆向移动,总结果,乙醇含量增大.
②反应①乙酸甲酯的平衡转化率与温度和氢碳比($\frac{n({H}_{2})}{n(乙酸甲酯)}$)的关系如图1.
该反应的平衡常数K随温度升高变小.(填“变大”“不变”或“变小”);氢碳比最大的是曲线c.

(2)①利用反应CO(g)+2H2(g)?CH3OH(g)合成甲醇.某温度下,向容积为2L的密闭容器中加入1mol CO和2mol H2,CO转化率的变化如图2所示,该温度下的平衡常数为4(保留两位有效数字,下同),若起始压强为12.6MPa,则10min时容器的压强为9.4 MPa.
②若保持其它条件不变,起始时加入2mol CO和2mol H2,再次达到平衡,相应的点是B.
(3)氢气可用CH4制备:CH4(g)+H2O(1)?CO(g)+3H2(g)△H=+250.1kJ•mol-1.已知CO(g)、H2(g)的燃烧热依次为283.0kJ•mol-1、285.8kJ•mol-1,请写出表示甲烷燃烧热的热化学方程式CH4(g)+2O2(g)→CO2(g)+2H2O(l)△H=-890.3KJ/mol.以CH4(g)为燃料可以设计甲烷燃料电池,已知该电池的能量转换效率为86.4%,则该电池的比能量为$\frac{4.8×1{0}^{7}J}{3.6×1{0}^{6}J}$kW•h•kg-1(只列计算式,比能量=$\frac{电池输出电能(kW•h)}{燃料质量(kg)}$,lkW•h=3.6×106J).

查看答案和解析>>

科目: 来源: 题型:推断题

11.在一定条件下,二氧化硫和氧气发生如图反应:
2SO2(g)+O2 (g)?2SO3(g) (△H<0)
(1)写出该反应的化学平衡常数表达式K=$\frac{{c}^{2}(S{O}_{3})}{{c}^{2}(S{O}_{2})•c({O}_{2})}$
(2)降低温度,该反应K值增大,二氧化硫转化率增大(以上均填增大、减小或不变)
(3)据图判断,反应进行至20min时,曲线发生变化的原因是增加了氧气的浓度(或通入氧气)
(4)10min到15min的曲线变化的原因可能是ab(填写编号).
a.加了催化剂     b.缩小容器体积   c.降低温度
d.增加SO3的物质的量.

查看答案和解析>>

科目: 来源: 题型:解答题

10.无色气体N2O4是一种强氧化剂,为重要的火箭推进剂之一.N2O4与NO2转换的热化学方程式为:N2O4(g)?2NO2(g)△H=+24.4kj/mol
(1)将一定量N2O4投入固定容积的真空容器中,下述现象能说明反应达到平衡的是bc.
a.v(N2O4)=2v(NO2)           b.体系颜色不变
c.气体平均相对分子质量不变     d.气体密度不变
达到平衡后,保持体积不变升高温度,再次到达平衡时,则混合气体颜色变深(填
“变深”、“变浅”或“不变”),判断理由正反应是吸热反应,其他条件不变,温度升高平衡正向移动,c(NO2)增加,颜色加深_.
(2)平衡常数K可用反应体系中气体物质分压表示,即K表达式中用平衡分压代替平衡浓度,分压=总压×物质
的量分数(例如:p(NO2)=p×x(NO2).写出上述反应平衡常数Kp表达式$\frac{{p}_{总}×{x}^{2}(N{O}_{2})}{x({N}_{2}{O}_{4})}$(用p、各气体物质的量分数x表示).
(3)在一恒温恒容的容器中,发生反应N2O4(g)?2NO2(g),下列图象正确的是B.

(4)上述反应中,正反应速率v=k•p(N2O4),逆反应速率v=k•P2(NO2),其中k、k为速率常数,则Kp为$\frac{{K}_{正}}{{K}_{逆}}$(以k、k表示).若将一定量N2O4投入真空容器中恒温恒压分解(温度298K、压强100kPa),已知该条件下k=4.8×l04 s-1,当N2O4分解10%时,v=3.9×106_kPa•s-1
(5)真空密闭容器中放人一定量N2O4,维持总压强p0恒定,在温度为T时,平衡时N2O4分解百分率为a.保持温度不变,向密闭容器中充人等量N2O4,维持总压强在2p0条件下分解,则N2O4的平衡分解率的表达式为$\sqrt{\frac{{a}^{2}}{2-{a}^{2}}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.氨基甲酸铵(NH2COONH4)是一种用途广泛的化工原料,其制备原理为:2NH3(g)+C02(g)?NH2C00NH4(s).实验室可用如图1所示装置制备:
请回答下列问题:
(1)制备NH2COONH4的反应在一定条件下能自发进行,该反应的△H<0(填“>”“=”或“<”);要提高NH2COONH4的产率可采取的措施为增大压强、适当降低温度.
(2)装置中盛液体石蜡的鼓泡瓶作用是通过观察气泡,使气体流速均匀,调节NH3与CO2通入比例.
(3)一定条件下,在恒容密闭容器中通入体积比为2:1的NH3和CO2制备NH2COONH4固体.
①下列能说明反应达到平衡状态的是bd.
a、NH3和CO2物质的量之比为2:1
b.密闭容器中混合气体的密度不变
c、反应的焓变不变
d.固体的质量不在发生变化
②实验测得不同温度下达到平衡时气体的总浓度如表
温度(℃)20.030.040.0
平衡时气体总浓度
(×10-3mol•L-1
3.44.86.8
30.0℃时该反应平衡常数K的计算式为$\frac{1}{(\frac{2}{3}×4.8×1{0}^{-3})^{2}×(\frac{1}{3}×4.8×1{0}^{-3})}$(不必计算结果)
(4)己知:NH2C00NH4+2H20?NH4HCO3+NH3•H2O.分别用三份不份不同初始浓度的NH2COONH4溶液测定不同温度下的水解反应速率,得到c(NH2COO-)随时间变化趋势如图2所示.
①15℃时,0~6min内NH2COONH4水解反应的平均速率为0.05mol/(L•min).
②对比图中曲线a、b、c可知,水解反应速率最大的是b.

查看答案和解析>>

科目: 来源: 题型:解答题

8.N、C、S元素的单质及化合物在工农业生成中有着重要的应用
Ⅰ、CO与Cl2在催化剂的作用下合成光气(COCl2).某温度下,向2L的密闭容器中投入一定量的CO和Cl2,在催化剂的作用下发生反应:CO(g)+Cl2(g)?COCl2(g)反应过程中测定的部分数据如下表:
t/minn(CO)/moln(Cl2)/mol
01.200.6
10.90
20.80
40.20
(1)写出光气(COCl2)的电子式
(2)上表是T℃时,CO和Cl2的物质的量浓度随时间(t)的变化情况,用COCl2表示2min内的反应速率v(COCl2)=0.1mol/(L.min).该温度下的平衡常数K=5.
(3)在一容积可变的密闭容器中充入10molCO和20molCl2,CO的平衡转化率随温度(T)、压强(P)的变化如图1所示.
①下列说法能判断该反应达到化学平衡的是BD(填字母序号).
A.Cl2的消耗速率等于COCl2的生成速率
B.Cl2的体积分数不变
C.Cl2的转化率和CO的转化率相等
D.混合气体的平均摩尔质量不再改变
②比较A、B两点压强大小:P(A)<P(B)(填“>”、“<”或“=”)
③若达到化学平衡状态A时,容器的体积为20L.如果反应开始时仍充入10molCO和20molCl2,则在平衡状态B时容器的体积为4L.
Ⅱ.甲醇是一种重要的化工原料,查资料,甲醇的制取可用以下两种方法:
(1)可用CO和H2制取甲醇:
已知CO、CH3OH和H2的燃烧分别是283kJ/mol、726.83kJ/mol、285.2kJ/mol写出由 CO和H2制取甲醇的热化学方程式CO(g)+2H2(g)=CH3OH(l),△H=-126.57kJ/mol.
(2)用电化学法制取:
某模拟植物光合作用的电化学装置如图2,该装置能将H2O和CO2转化为O2和甲醇(CH3OH)
①该装置工作时H+向b区移动(填“a”或“b”)
②b极上的电极反应式为6H++CO2+6e-=CH3OH+H2O.

查看答案和解析>>

科目: 来源: 题型:解答题

7.氨催化氧化是硝酸工业的基础,按要求回答下列问题:
(1)NH3与O2可生成NO,其热化学方程式可表示为:4NH3(g)+5O2(g)?4NO(g)+6H2O(g)△H
已知几种化学键的键能如表:
化学键N-HO-HO=O
E/(kJ•mol-1xymn
①由此计算得出△H=12x+5n-4y-12m (用上表中字母表示)kJ•mol-1
②400℃时,在1L的密闭容器中加入l mol NH3和1.5mol O2,测得平衡时容器的压强为p,且比反应前压强增大了4%,则该温度下NH3的转化率为40%;该反应的平衡常数Kp=3.545×10-3p(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数);达到平衡后,保持温度不变,将反应容器的体积增大一倍,平衡向正反应(填“正反应”或“逆反应”)方向移动,判断理由是对气体分子数增大的反应,减小压强平衡向正反应方程移动.
(2)实际反应中,在上述1L的密闭容器中加入l mol NH3和1.5mol O2的反应过程中还发生4NH3+3O2?N2+6H2O反应,有关温度与各物质的量关系如图所示:
①已知400℃时,混合气体中NH3、N2、NO的物质的量比为5:6:3,则图象中x=0.3.
②NH3生成NO和N2的反应分别属于放热反应、放热反应(填“吸热反应”或“放热反应”),温度高于840℃后,各物质的物质的量发生如图所示变化的原因可能是可能是氨气高温分解生成氮气和氢气,使氨气氧化生成NO平衡向左移动;NO高温分解生成氮气和氧气;氨气和NO反应生成氮气和水(只答一条即可).

查看答案和解析>>

同步练习册答案