相关习题
 0  160438  160446  160452  160456  160462  160464  160468  160474  160476  160482  160488  160492  160494  160498  160504  160506  160512  160516  160518  160522  160524  160528  160530  160532  160533  160534  160536  160537  160538  160540  160542  160546  160548  160552  160554  160558  160564  160566  160572  160576  160578  160582  160588  160594  160596  160602  160606  160608  160614  160618  160624  160632  203614 

科目: 来源: 题型:实验题

11.随着科技的进步,合理利用资源、保护环境成为当今社会关注的焦点.甲胺铅碘(CH3NH3PbI3)用作全固态钙钛矿敏化太阳能电池的敏化剂,可由CH3NH2、PbI2及HI为原料合成,回答下列问题:
(1)制取甲胺的反应为CH3OH(g)+NH3(g)?CH3NH2(g)+H2O(g)△H.已知该反应中相关化学键的键能数据如下:
共价键C-OH-ON-HC-N
键能/kJ•mol-1351463393293
则该反应的△H=-12kJ•mol-1
(2)上述反应中所需甲醇工业上利用水煤气合成,反应为CO(g)+2H2(g)?CH3OH(g)△H<0.在一定条件下,将l mol CO和2mol H2通入密闭容器中进行反应,当改变某一外界条件(温度或压强)时,CH3OH的体积分数φ(CH3OH)变化趋势如图所示:

①平衡时,M点CH3OH的体积分数为10%,则CO的转化率为25%.
②X轴上a点的数值比b点小(填“大”或“小”).某同学认为上图中Y轴表示温度,你认为他判断的理由是随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度.
(3)实验室可由四氧化三铅和氢碘酸反应制备难溶的PbI2,则每生成3mol PbI2的反应中,转移电子的物质的量为2mol
(4)常温下,PbI2饱和溶液(呈黄色)中c(Pb2+)=1.0×10-3 mol•L-1,则Ksp(PbI2)=4×10-9;已知Ksp(PbCl2)=1.6×10-5,则转化反应PbCl2(s)+2I-(aq)?PbI2(s)+2Cl-(aq)的平衡常数K=4000
(5)分解HI曲线和液相法制备HI反应曲线分别如图1和图2所示:

①反应H2(g)+I2(g)?2HI(g) 的△H小于(填大于或小于)0.
②将二氧化硫通入碘水中会发生反应:SO2+I2+2H2O?3H++HSO4+2I-,I2+I-?I3-
图2中曲线a、b分别代表的微粒是H+、I3-(填微粒符号);由图2 知要提高碘的还原率,除控制温度外,还可以采取的措施是减小$\frac{n({I}_{2})}{n(S{O}_{2})}$的投料比.

查看答案和解析>>

科目: 来源: 题型:解答题

10.运用化学反应原理研究氮、硫单质及其化合物的性质是一个重要的课题.回答下列问题:
(1)恒容密闭窗口中,工业固氮反应N2(g)+3H2(g)?2NH3(g)的化学平衡常数K和温度的关系如表所示:
 温度/℃ 25 200 300 400 500
 K5×108  1.0 0.86 0.507 0.152
①从上表演列出数据分析,该反应为放热(填“吸热”或“放热”)反应
②有关工业合成氨的研究成果,曾于1918年、1931年、2007年三次荣膺诺贝尔化学奖.
下列关于合成氨反应描述的图象中,不正确的是C(填序号).

③400℃时,测得某时刻氨气、氮气、氢气物质的量浓度分别为3mol•L-1、2mol•L-1、1mol•L-1,则该反应的v<v(填“>”、“<”或“=”)
(2)近年来,科学家又提出在常温、常压、催化剂等条件下合成氨的新思路,反应原理为:2N2(g)+6H2O(g)?4NH3(g)+3O2(g),则其反应热△H=+1530kJ•mol-1.[已知:N2(g)+3H2(g)?2NH3(g)△H=-92.4kJ•mol-1,2H2(g)+O2(g)?2H2O(1)△H=-571.6kJ•mol-1]
(3)联氨(N2H4)、二氧化氮(NO2)可与KOH溶液构成碱性燃料电池,其电池反应原理为2N2H4+2NO2═3N2+4H2O,则负极的电极反应式为N2H4-4e-+4OH-=N2+4H2O.
(4)25℃时,将pH=3的盐酸和pH=11的氨水等体积混合后,溶液中的离子浓度由大到小的顺序为c(NH4+)>c(Cl-)>c(OH-)>c(H+).
(5)若将等物质的量的SO2与NH3溶于水充分反应,所得溶液中c(H+)-c(OH-)=c(HSO3-)+2c(SO32-)-c(NH4+)(填表达式).(已知:H2SO3的Ka1=1.7×10-2mol•L-1,Ka2=6.0×10-8mol•L-1;NH3•H2O的Kb=1.8×10-5mol•L-1

查看答案和解析>>

科目: 来源: 题型:实验题

9.化学在能源开发与利用中起着重要的作用,如甲醇、乙醇、二甲醚(CH3OCH3)等都是新型燃料.
(1)在Cu2O/ZnO做催化剂的条件下CO(g)+2H2(g)?CH3OH(g),将CO(g)和H2(g)充入容积为2L的密闭容器中合成CH3OH(g),反应过程中,CH3OH的物质的量(n)与时间(t)及温度的关系如图1.

根据题意回答下列问题:
①反应达到平衡时,平衡常数表达式K=$\frac{c(C{H}_{3}OH)}{c(CO)×{c}^{2}({H}_{2})}$;
升高温度,K值减小(填“增大”、“减小”或“不变”).
②在500℃,从反应开始到平衡,氢气的平均反应速率v(H2)=0.2mol•L-1•s-1
③若其它条件不变,对处于Z点的体系,将体积压缩至原来的$\frac{1}{2}$,达到新的平衡后,下列有关该体系的说法正确的是bc.
a.氢气的浓度与原平衡比减少    b.正、逆反应速率都加快
c.甲醇的物质的量增加       d.重新平衡时$\frac{n({H}_{2})}{n(C{H}_{3}OH)}$增大
(2)催化剂存在的条件下,在固定容积的密闭容器中投入一定量的CO和H2,可制得乙醇(可逆反应).该反应过程中能量变化如图2所示:
①写出CO和H2制备乙醇的热化学反应方程式2CO(g)+4H2(g)?CH3CH2OH(g)+H2O(g)△H=-E2kJ/mol.
②在一定温度下,向上述密闭容器中加入1mol CO、3mol H2及固体催化剂,使之反应.平衡时,反应产生的热量为Q kJ,若温度不变的条件下,向上述密闭容器中加入4mol CO、12mol H2及固体催化剂,平衡时,反应产生的热量为w kJ,则w的范围为4Q<w<2E2
(3)二甲醚(CH3OCH3)被称为21世纪的新型燃料,具有清洁、高效的优良性能.以二甲醚、空气、氢氧化钾溶液为原料,石墨为电极可构成燃料电池,其工作原理与甲烷燃料电池原理相类似.该电池中负极上的电极反应式是CH3OCH3+16OH-12e-=2CO2-3+11H2O.

查看答案和解析>>

科目: 来源: 题型:实验题

8.CO2和CH4是两种重要的温室气体,通过CH4和CO2反应制造更高价值化学品是目前的研究目标.
(1)250℃时,以镍合金为催化剂,向4L容器中通入6mol CO2、6mol CH4,发生如下反应:CO2(g)+CH4(g)?2CO(g)+2H2(g).平衡体系中各组分体积分数如表:
物质CH4CO2COH2
体积分数0.10.10.40.4
①此温度下该反应的平衡常数K=64.
②已知:CH4(g)+2O2(g)═CO2(g)+2H2O(g)△H=-890.3kJ•mol-1
CO(g)+H2O (g)═CO2(g)+H2 (g)△H=+2.8kJ•mol-1
2CO(g)+O2(g)═2CO2(g)△H=-566.0kJ•mol-1
反应CO2(g)+CH4(g)?2CO(g)+2H2(g)的△H=+247.3kJ•mol-1
(2)以二氧化钛表面覆盖Cu2Al2O4为催化剂,可以将CO2和CH4直接转化成乙酸.
①在不同温度下催化剂的催化效率与乙酸的生成速率如图1所示.250~300℃时,温度升高而乙酸的生成速率降低的原因是温度超过250℃时,催化剂的催化效率降低.

②为了提高该反应中CH4的转化率,可以采取的措施是增大反应压强、增大CO2的浓度.
③将Cu2Al2O4溶解在稀硝酸中的离子方程式为3Cu2Al2O4+32H++2NO3-=6Cu2++6Al3++2NO↑+16H2O.
(3)Li2O、Na2O、MgO均能吸收CO2.①如果寻找吸收CO2的其他物质,下列建议合理的是ab.
a.可在碱性氧化物中寻找
b.可在ⅠA、ⅡA族元素形成的氧化物中寻找
c.可在具有强氧化性的物质中寻找
②Li2O吸收CO2后,产物用于合成Li4SiO4,Li4SiO4用于吸收、释放CO2.原理是:在500℃,CO2与Li4SiO4接触后生成Li2CO3;平衡后加热至700℃,反应逆向进行,放出CO2,Li4SiO4再生,说明该原理的化学方程式是CO2+Li4SiO4$?_{700℃}^{500℃}$Li2CO3+Li2SiO3
(4)利用反应A可将释放的CO2转化为具有工业利用价值的产品.
反应A:CO2+H2O$\frac{\underline{\;电解\;}}{高温}$CO+H2+O2
高温电解技术能高效实现(3)中反应A,工作原理示意图如图2:CO2在电极a放电的反应式是CO2+2e-═CO+O2-

查看答案和解析>>

科目: 来源: 题型:解答题

7.氨及铵盐在中学化学及化工生产中占有重要地位.
(1)合成氨是重要的工业反应:N2(g)+3H2(g)?2NH3(g),已知NH3与H2的燃烧热分别为:382.7KJ•mol-1、285.8KJ•mol-1,则合成氨反应的热化学方程式为:N2(g)+3H2(g)?2NH3(g)△H=-92.0KJ/mol.
(2)在2L恒容装置中充入1molN2、3molI2,在500℃、催化剂的作用下发生反应,装置内NH3的体积百分含量如下图1所示,则下列有关叙述中正确的是:AC.

A.使用催化剂,可降低该反应的活化能,加快反应速率
B.容器内ν(N2)=ν(H2)时,说明反应已达平衡
C.当容器内n(H 2):n(NH3)=3:1时,说明反应已达平衡
D.20分钟内ν(NH3)=0.033mol•L-1•min-1
(3)同时研究氨的含量与温度及催化剂的关系得到上图2,其中a线表示平衡时氨的含量,b线表示在使用催化剂下反应进行10分钟时氨的含量,比较X、Y两点的平衡常数大小并说明原因:Y点大,因为该反应正反应是放热反应,温度升高,k值减小,Y、Z两点的反应速率Y点大(填写“Y点大”或“Z点大”).
(4)已知:KSP[Mg(OH)2]=1.3×10-11,K(NH3•H2O)=1.8×10-5
①Mg(OH)2+2NH4+?Mg2++2NH3•H2O的平衡常数K=0.040(保留两位有效数字).
②向0.01mol Mg(OH)2固体中加入1L 的0.03mol•L-1的NH4Cl溶液恰好使固体完全溶解.此时溶液中离子浓度由大到小的顺序为c(Cl-)>c(NH4+)=c(Mg2+)>c(OH-)>c(H+).

查看答案和解析>>

科目: 来源: 题型:解答题

6.氨气是一种重要的化工原料,在工农业中都有广泛的应用.
(1)NH3和CO2在120℃和催化剂的作用下可以合成尿素,反应方程式为2NH3(g)+CO2(g)?CO(NH22(s)+H2O(g).
某实验小组向一个容积不变的真空密闭容器中充入CO2与NH3合成尿素,在恒定温度下,混合气体中NH3的体积分数随时间的变化关系如图所示(该条件下尿素为固体).
A点的正反应速率v(CO2)大于(填“大于”“小于”或“等于”)B点的逆反应速率v(CO2),NH3的平衡转化率为75%.
(2)氨基甲酸铵(NH2COONH4)是合成尿素过程的中间产物,现将体积比为2:1的NH3和CO2混合气体充入一个容积不变的真空密闭容器中,在恒定温度下使其发生反应并达到平衡:2NH3(g)+CO2(g)?NH2COONH4(s).
实验测得在不同温度下的平衡数据如下表:
温度(℃)15.020.025.030.035.0
平衡气体总浓度
(10-3mol•L-1
2.43.44.86.89.6
①上述反应的焓变:△H<0,熵变△S<0(填“>”“<”或“=”).
②下列说法能说明上述反应建立化学平衡状态的是CD.
A.混合气体的平均相对分子质量不再发生变化
B.混合气体中NH3与CO2的浓度之比不再发生变化
C.混合气体的密度不再发生变化
D.v(NH3)=2v(CO2
③根据表中数据,列出25.0℃时该反应的化学平衡常数的计算式K=$\frac{1}{(3.2×1{0}^{-3})^{2}×(1.6×1{0}^{-3})}$(不要求计算结果),该反应温度每升高10℃,化学平衡常数就变为原来的2倍.
④温度一定时,向上述容器中再按照NH3和CO2物质的量之比为2:1充入一定量的混合气体,平衡向右(填“向左”“向右”或“不”)移动,该平衡中NH3的浓度与原平衡时NH3浓度相比前者大(填“前者大”“后者大”或“相等”).

查看答案和解析>>

科目: 来源: 题型:解答题

5.煤的气化可以减少环境污染,而且生成的CO和H2被称作合成气,能合成很多基础有机化工原料.
(1)工业上可利用CO生产乙醇:2CO(g)+4H2(g)?CH3CH2OH(g)+H2O(g)△H1
又知:H2O(l)═H2O(g)△H2
CO(g)+H2O(g)?CO2(g)+H2(g)△H3
工业上也可利用CO2(g)与H2(g)为原料合成乙醇:
2CO2(g)+6H2(g)?CH3CH2OH(g)+3H2O(l)△H
则△H与△H1、△H2、△H3之间的关系是△H=△H1-3△H2-2△H3
(2)一定条件下,H2、CO在体积固定的绝热密闭容器中发生如下反应:4H2(g)+2CO(g)?CH3OCH3(g)+H2O(g),下列选项不能判断该反应达到平衡状态的是a、b.
a.v(H2)正=2v(CO)逆
b.平衡常数K不再随时间而变化
c.混合气体的密度保持不变
d.CH3OCH3和H2O的体积之比不随时间而变化
(3)工业可采用CO与H2反应合成再生能源甲醇,反应:CO(g)+2H2(g)?CH3OH(g),在一容积可变的密闭容器中充有10mol CO和20mol H2,在催化剂作用下发生反应生成甲醇,CO的平衡转化率(α)与温度(T)、压强(p)的关系如图1所示.
①合成甲醇的反应为放热(填“放热”或“吸热”)反应.
②A、B、C三点的平衡常数KA、KB、KC的大小关系为KA=KB>KC.p1和p2的大小关系为P1<P2
③若达到平衡状态A时,容器的体积为10L,则在平衡状态B时容器的体积为2L.

(4)工业上可通过甲醇羰基化法制取甲酸甲酯,其反应的热化学方程式为CH3OH(g)+CO(g)?HCOOCH3(g)△H2=-29.1kJ•mol-1.科研人员对该反应进行了研究,部分研究结果如图2、3:
①从反应压强对甲醇转化率的影响“效率”看,工业制取甲酸甲酯应选择的压强是4.0×106Pa(填“3.5×106Pa”“4.0×106Pa”或“5.0×106Pa”).
②实际工业生产中采用的温度是80℃,其理由是高于80℃时,温度对反应速率影响较小,且反应放热,升高温度时平衡逆向移动,转化率降低.

查看答案和解析>>

科目: 来源: 题型:解答题

4.“甲醇制取低碳烯烃技术(DMTO)”项目曾摘取了2014年度国家技术发明奖一等奖.DMTO主要包括煤的气化、液化、烯烃化三个阶段.回答下列有关问题:
(1)煤的气化.用化学方程式表示出煤的气化的主要反应:C+H2O(g)$\frac{\underline{\;高温\;}}{\;}$CO+H2
(2)煤的液化.下表中有些反应是煤液化过程中的反应:
热化学方程式平衡常数
500℃700℃
Ⅰ.2H2(g)+CO(g)?CH3OH(g)△H1=akJ•mol-12.50.2
Ⅱ.H2(g)+CO2(g)?H2O(g)+CO(g)△H2=bkJ•mol-11.02.3
Ⅲ.3H2(g)+CO2(g)?CH3OH(g)+H2O(g)△H3=ckJ•mol-1K34.6
①反应Ⅰ的平衡常数表达式为K1=$\frac{c(C{H}_{3}OH)}{{c}^{2}({H}_{2})×c(CO)}$.
②b>0(填“>”“<”或“=”),c与a、b之间的定量关系为c=a+b.
③K3=2.5(填具体的数值),若反应Ⅲ是在500℃、容积为2L的密闭容器中进行的,测得某一时刻体系内H2、CO2、CH3OH、H2O的物质的量分别为6mol、2mol、10mol、10mol,则此时CH3OH的生成速率>(填“>”“<”或“=”)CH3OH的消耗速率.
④对于反应Ⅲ在容器容积不变的情况下,下列措施可增加甲醇产率的是A、B.
A.升高温度
B.将CH3OH(g)从体系中分离
C.使用合适的催化剂
D.充入He,使体系总压强增大
(3)烯烃化阶段.如图1是某工厂烯烃化阶段产物中乙烯、丙烯的选择性与温度、压强之间的关系(选择性:指生成某物质的百分比.图中Ⅰ、Ⅱ表示乙烯,Ⅲ表示丙烯).

①为尽可能多地获得乙烯,控制的生产条件为530℃,0.1Mpa.
②一定温度下某密闭容器中存在反应:2CH3OH(g)?CH2=CH2(g)+2H2O(g)△H>0.在压强为p1时,产物水的物质的量与时间的关系如图2所示,若t0时刻,测得甲醇的体积分数为10%,此时甲醇乙烯化的转化率为85.7%(保留三位有效数字);若在t1时刻将容器容积快速扩大到原来的2倍,请在图2中绘制出此变化发生后至反应达到新平衡时水的物质的量与时间的关系图.

查看答案和解析>>

科目: 来源: 题型:解答题

3.肌红蛋白(Mb)与血红蛋白(Hb)的主要功能为输送氧气与排出二氧化碳.肌红蛋白(Mb)可以与小分子X(如氧气或一氧化碳)结合.反应方程式:Mb(aq)+X(g)?MbX(aq)
(1)通常用p 表示分子X 的压力,po表示标准状态大气压,若X 分子的平衡浓度为p/po,写出上述反应的平衡常数表达式:K=$\frac{c(MbX)}{c(Mb)\frac{P}{po}}$.请用p、po及K 表示吸附小分子的肌红蛋白(MbX)占总肌红蛋白的比例$\frac{K\frac{P}{po}}{K\frac{P}{po}+1}$.
(2)在常温下,肌红蛋白与CO 结合反应的平衡常数K(CO)远大于与O2结合的平衡常数K(O2),下列哪个图最能代表结合率(f)与此两种气体压力(p)的关系C.


(3)人体中的血红蛋白(Hb)同样能吸附O2、CO2 和H+,相关反应的方程式及其反应热、化学平衡常数分别是:
Ⅰ.Hb(aq)+H+(aq)?HbH+(aq)△H1,K1
Ⅱ.HbH+ (aq)+O2(g)?HbO2(aq)+H+(aq)△H2,K2
Ⅲ.Hb(aq)+O2(g)?HbO2(aq);△H3,K3
Ⅳ.HbO2(aq)+H+(aq)+CO2(g)?Hb(H+)CO2(aq)+O2(g)
①△H3=△H1+△H2(用△H1、△H2表示),K3=K1•K2 (用K1、K2表示)
②若较低温下反应Ⅳ能自发进行,则该反应△H<0,△S<0(填“>”、“<”或“=”).
(4)图Ⅰ表示血红蛋白氧结合率(f)与氧气分压[p(O2)]示意图,当pH>7.4 时,此时图中代表的曲线是A(填“A”或“B”).
(5)向2L密闭容器中加入2mol CO2、6mol H2,在适当的催化剂作用下,发生反应:CO2(g)+3H2(g)
CH3OH(l)+H2O(l)△H<0,CO2的浓度随时间(0~t2)变化如图Ⅱ所示,保持其他条件不变,在t2时将容器容积缩小一倍,t3时达到平衡,t4时降低温度,t5时达到平衡,请画出t2~t6CO2的浓度随时间的变化.

查看答案和解析>>

科目: 来源: 题型:解答题

2.金属钨用途广泛,主要用于制造硬质或耐高温的合金,以及灯泡的灯丝.高温下密闭容器中用H2还原WO3可得到金属钨,其总反应为:WO3(s)+3H2(g)$\stackrel{高温}{?}$W (s)+3H2O (g)  请回答下列问题:
(1)上述反应的化学平衡常数表达式为K=$\frac{{c}^{3}({H}_{2}O)}{{c}^{3}({H}_{2})}$.
(2)某温度下反应达到平衡时,H2与水蒸气的体积比为2:3,则H2的平衡转化率为60%;随着温度的升高,H2与水蒸气的体积比减小,则该反应为吸热反应(填“吸热”或“放热”).
(3)上述总反应过程大致分为三个阶段,各阶段主要成分与温度的关系如下表所示:
温度25℃~550℃~600℃~700℃
主要成分WO3    W2O5     WO2      W
第一阶段反应的化学方程式为2WO3+H2$\frac{\underline{\;高温\;}}{\;}$W2O5+H2O;假设WO3完全转化为W,则三个阶段消耗H2物质的量之比为1:1:4.
(4)已知:温度过高时,WO2(s)转变为WO2(g):
WO2(s)+2H2(g)?W(s)+2H2O (g)△H=+66.0kJ?mol-1
WO2(g)+2H2(g)?W(s)+2H2O (g)△H=-137.9kJ?mol-1
则WO2(s)?WO2(g)的△H=+203.9 kJ•mol-1
(5)钨丝灯管中的W在使用过程中缓慢挥发,使灯丝变细,加入I2可延长灯管的使用寿命,其工作原理为:W(s)+2I2 (g) $?_{约3000℃}^{1400℃}$WI4 (g).下列说法正确的有a、b.
a.灯管内的I2可循环使用
b.WI4在灯丝上分解,产生的W又沉积在灯丝上
c.WI4在灯管壁上分解,使灯管的寿命延长
d.温度升高时,WI4的分解速率加快,W和I2的化合速率减慢.

查看答案和解析>>

同步练习册答案