相关习题
 0  160439  160447  160453  160457  160463  160465  160469  160475  160477  160483  160489  160493  160495  160499  160505  160507  160513  160517  160519  160523  160525  160529  160531  160533  160534  160535  160537  160538  160539  160541  160543  160547  160549  160553  160555  160559  160565  160567  160573  160577  160579  160583  160589  160595  160597  160603  160607  160609  160615  160619  160625  160633  203614 

科目: 来源: 题型:实验题

1.(1)用CO2和氢气合成CH3OCH3(甲醚)是解决能源危机的研究方向之一.
已知:CO(g)+2H2(g)?CH3OH(g)△H=-90.7kJ•mol-1K1
2CH3OH(g)?CH3OCH3(g)+H2O(g)△H=-23.5kJ•mol-1K2
CO(g)+H2O(g)?CO2(g)+H2(g)△H=-41.2kJ•mol-1K3
(1)则CO2和氢气合成CH3OCH3(g)的热化学方程式为2CO2(g)+6H2(g)=CH3OCH3(g)+3H2O(g)△H=-122.5kJ/mol;
该反应的平衡常数K=$\frac{{{K}_{1}}^{2}•{K}_{2}}{{{K}_{3}}^{2}}$(用K1、K2、K3表示)
(2)如图表示在密闭容器中反应:2SO2+O2?2SO3△H<0达到平衡时,由于条件改变而引起反应速率和化学平衡的变化情况,a→b过程中改变的条件可能是升高温度;b→c过程中改变的条件可能是将SO3从体系中分离出来.
(3)在10L恒容密闭容器中充入X(g)和Y(g),发生反应X(g)+Y(g)═M(g)+N(g),所得实验数据如表:
实验
编号
温度/℃起始时物质的量/mol平衡时物质的量/mol
n(X)n(Y)n(M)
7000.400.100.090
8000.100.400.080
8000.200.30a
9000.100.15b
则实验③中达到平衡时X的转化率为60%; 实验④中达到平衡时b<(填“>”“<”或“=”)0.060.

查看答案和解析>>

科目: 来源: 题型:实验题

20.用O2将HCl转化为Cl2,可提高效益,减少污染.

(1)传统上该转化通过如下所示的催化循环实现.其中,反应①为:2HCl(g)+CuO(s)?H2O(g)+CuCl2(s)△H1反应②生成1mol Cl2(g)的反应热为△H2,则总反应的热化学方程式为4HCl(g)+O2(g)=2Cl2(g)+2H2O(g)△H=2(△H1+△H2)(反应热用△H1和△H2表示).
(2)新型RuO2催化剂对上述HCl转化为Cl2的总反应具有更好的催化活性.
①实验测得在一定压强下,总反应的HCl平衡转化率随温度变化的转化率αHCl~T曲线如图1:则总反应的△H<0(填“>”“=”或“<”);A、B两点的平衡常数K(A)与K(B)中较大的是K(A).
②在上述实验中若压缩体积使压强增大,画出相应αHCl~T曲线的示意图1,并简要说明理由:增大压强,平衡向正反应方向移动,αHCl增大,相同温度下HCl的平衡转化率比之前实验的大.
③下列措施中,有利于提高αHCl的有BD.
A.增大n(HCl)     B.增大n(O2)      C.使用更好的催化剂    D.移去H2O
(3)一定条件下测得反应过程中n(Cl2)的数据如下:
t/min02.04.06.08.0
n(Cl2)/10-3mol01.83.75.47.2
计算2.0~6.0min内以HCl的物质的量变化表示的反应速率(以mol•min-1为单位)1.8×10-3mol•min-1
(4)Cl2用途广泛,写出用Cl2制备漂白粉的化学反应方程式2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O.

查看答案和解析>>

科目: 来源: 题型:实验题

19.亚硝酸氯(ClNO)是有机合成中的重要试剂.可由NO与Cl2在通常条件下反应得到,化学方程式为2NO(g)+Cl2(g)?2ClNO(g)
(1)氮氧化物与悬浮在大气中的海盐粒子相互作用时会生成亚硝酸氯,涉及如下反应:
①2NO2(g)+NaCl(s)?NaNO3(s)+ClNO(g)K1
②4NO2(g)+2NaCl(s)?2NaNO3(s)+2NO(g)+Cl2(g)K2
③2NO(g)+Cl2(g)?2ClNO(g)K3
则K1,K2,K3之间的关系为K3=$\frac{{{K}_{1}}^{2}}{{K}_{2}}$.
(2)已知几种化学键的键能数据如表(亚硝酸氯的结构为Cl-N=O):
 化学键 N≡O Cl-Cl Cl-N N=O
 键能/kJ.mol-1 630 243 a 607
则2NO(g)+Cl2(g)?2ClNO(g)反应的△H和a的关系为△H=289-2akJ/mol.
(3)300℃时.2NO(g)+Cl2(g)?2ClNO(g)的正反应速率表达式为v正=k•cn(ClNO),
测得速率和浓度的关系如下表:
 序号 c(ClNO)/mol.L-1 v/mol.L-1•s-1
 ① 0.30 3.60×10${\;}^{-{9}^{\;}}$
 ② 0.60 1.44×10-8
 ③ 0.90 3.24×10-8
n=2;k=4.0×10-8L/(mo1•s)(注明单位).
(4)在1L的恒容密闭容器中充入2molNO(g)和1molCl2(g),在不同温度下测得c(ClNO)与时间的关系如图A:

①该反应的△H<0(填“>”“<”或“=”).
②反应开始到10min时NO的平均反应速率v(NO)=0.1mol/(L•min),
③T2时该反应的平衡常数K=2
(5)一定条件下在恒温恒容的密闭容器中按一定比例充入NO(g)和Cl2(g),平衡时ClNO的体积分数随$\frac{n(NO)}{n(C{l}_{2})}$=的变化图象如图B,则A、B、C三状态中,NO的转化率最大的是A点,当$\frac{n(NO)}{n(C{l}_{2})}$=1.5时,达到平衡状态ClNO的体积分数可能是D、E、F三点中的D点.

查看答案和解析>>

科目: 来源: 题型:实验题

18.锂离子电池广泛应用于日常电子产品中,也是电动汽车动力电池的首选.正极材料的选择决定了锂离子电池的性能.磷酸铁钾(LiFePO4)以其高倍率性、高比能量、高循环特性、高安全性、低成本、环保等优点而逐渐成为“能源新星”.
(1)高温固相法是磷酸铁锂生产的主要方法.通常以铁盐、磷酸盐和锂盐为原料,按化学计量比充分混匀后,在惰性气氛的保护中先经过较低温预分解,再经高温焙烧,研磨粉碎制成.其反应原理如下:
Li2CO3+2FeC2O4•2H2O+2NH4H2PO4═2NH3↑+3CO2↑+2LiFePO4+2CO↑+5H2O↑
①完成上述化学方程式.
②理论上,反应中每转移0.15mol电子,会生成LiFePO423.7g;
③反应需在惰性气氛的保护中进行,其原因是防止Fe(Ⅱ)被氧化;
(2)磷酸亚铁锂电池装置如图所示,其中正极材料橄榄石型LiFePO4通过粘合剂附着在铝箔表面,负极石墨材料附着在铜箔表面,电解质为溶解在有机溶剂中的锂盐.

电池工作时的总反应为:LiFePO4+6C$?_{放电}^{充电}$Li1-xFePO4+LixC6,则放电时,正极的电极反应式为Li1-xFePO4+xLi++xe-═LiFePO4.充电时,Li+迁移方向为由左向右(填“由左向右”或“由右向左”),图中聚合物隔膜应为阳(填“阳”或“阴”)离子交换膜.
(3)用该电池电解精炼铜.若用放电的电流强度I=2.0A的电池工作10分钟,电解精炼铜得到铜0.32g,则电流利用效率为80.4%(保留小数点后一位).(已知:法拉第常数F=96500C/mol,电流利用效率=$\frac{负载利用电量}{电池输出电量}$×100%)
(4)废旧磷酸亚铁锂电池的正极材料中的LiFePO4难溶于水,可用H2SO4和H2O2的混合溶液浸取,发生反应的离子方程式为2LiFePO4+2H++H2O2═2Li++2Fe3++2PO43-+2H2O.

查看答案和解析>>

科目: 来源: 题型:解答题

17.(1)反应Fe(s)+CO2(g)?FeO(s)+CO(g)△H1,平衡常数为K1反应Fe(s)+H2O(g)?FeO(s)+H2(g)△H2,平衡常数为K2在不同温度时K1、K2的值如下表:
700℃900℃
K11.472.15
K22.381.67
反应CO2(g)+H2(g)?CO(g)+H2O(g)△H,平衡常数K,则△H=△H1-△H2(用△H1和△H2表示),K=$\frac{{K}_{1}}{{K}_{2}}$(用K1和K2表示),且由上述计算可知,反应CO2(g)+H2(g)?CO(g)+H2O(g)是吸热反应(填“吸热”或“放热”).
(2)一定温度下,向某密闭容器中加入足量铁粉并充入一定量的CO2气体,发生反应Fe(s)+CO2(g)?FeO(s)+CO(g)△H>0,CO2的浓度与时间的关系如图1所示:

①该条件下反应的平衡常数为2.0;若铁粉足量,CO2的起始浓度为2.0mol•L-1,则平衡时CO2的浓度为$\frac{2}{3}$mol•L-1
②下列措施中能使平衡时$\frac{c(CO)}{c(C{O}_{2})}$增大的是A(填序号).
A.升高温度       B.增大压强
C.再充入一定量的CO2    D.再加入一定量铁粉
(3)对于可逆反应Fe(s)+CO2(g)?FeO(s)+CO(g),该反应的逆反应速率随时间变化的关系如图2.
①从图中看到,反应在t2时达平衡,在t1时改变了某种条件,改变的条件可能是AC.
A.升温       B.增大CO2浓度      C.使用催化剂
②如果在t3时从混合物中分离出部分CO,t4~t5时间段反应处于新平衡状态,请在图上画出t3~t5的V(逆)变化曲线.

查看答案和解析>>

科目: 来源: 题型:解答题

16.二氧化碳是一种宝贵的碳氧资源,以CO2和NH3为原料合成尿素是固定和利用CO2的成功范例.在尿素合成塔中的主要反应可表示如下:
反应Ⅰ:2NH3(g)+CO2(g)═NH2CO2NH4(s)△H1=akJ•mol-1
反应Ⅱ:NH2CO2NH4(s)═CO(NH22(s)+H2O(g)△H2=+72.49kJ•mol-1
总反应Ⅲ:2NH3(g)+CO2(g)═CO(NH22(s)+H2O(g)△H3=-86.98kJ•mol-1
请回答下列问题:
(1)反应Ⅰ的△H1=-159.47kJ•mol-1(用具体数据表示).
(2)反应Ⅱ的△S>(填>或<)0,一般在高温(“高温”或“低温”或“任何温度”)下
有利于该反应自发进行.
(3)反应Ⅲ中影响CO2平衡转化率的因素很多,图1为某特定条件下,不同水碳比n(H2O)/n(CO2
和温度影响CO2平衡转化率变化的趋势曲线.
①其他条件相同时,为提高CO2的平衡转化率,生产中可以采取的措施是降低(填提高或降低)水碳比.
②当温度高于190℃后,CO2平衡转化率出现如图1所示的变化趋势,其原因是温度高于190℃时,因为反应Ⅲ是放热反应,温度升高平衡向逆方向进行,CO2的平衡转化率降低.

(4)反应Ⅰ的平衡常数表达式K1=$\frac{1}{c(C{O}_{2}){c}^{2}(N{H}_{3})}$;如果起始温度相同,反应Ⅰ由在恒温容器进行改为在绝热(与外界没有热量交换)容器中进行,平衡常数K1将减少(填增大、减少、不变).
(5)某研究小组为探究反应Ⅰ中影响c(CO2)的因素,在恒温下将0.4molNH3和0.2molCO2放入容积为2L的密闭容器中,t1时达到平衡过程中c(CO2)随时间t变化趋势曲线如图2所示.若其他条件不变,t1时将容器体积压缩到1L,请画出t1-t3之间c(CO2)随时间t变化趋势曲线(t2达到新的平衡).
(6)尿素在土壤中会发生反应CO(NH22+2H2O═(NH42CO3.下列物质中与尿素有类似性质的是A、B.
A.NH2COONH4B.H2NOCCH2CH2CONH2C.HOCH2CH2OHD.HOCH2CH2NH2

查看答案和解析>>

科目: 来源: 题型:实验题

15.工业上用乙苯为原料制苯乙烯.
(1)Ⅰ.采用乙苯与CO2脱氢生产重要化工原料苯乙烯

(1)①乙苯与CO2反应的平衡常数表达式为K=$\frac{c({C}_{6}{H}_{5}{CH=CH}_{2})?c(CO)?c({H}_{2}O)}{c({C}_{6}{H}_{5}{CH}_{2}{CH}_{3})?c({CO}_{2})}$.
②下列叙述不能说明乙苯与CO2反应已达到平衡状态的是bc.
a.v(CO)=v(CO)
b.c(CO2)=c(CO)
c.消耗1 mol CO2同时生成1 mol H2O
d.CO2的体积分数保持不变
(2)在3 L密闭容器内,乙苯与CO2的反应在三种不同的条件下进行实验,乙苯、CO2的起始浓度分别为1.0 mol/L和3.0 mol/L,其中实验Ⅰ在T1℃,0.3 Mpa,而实验Ⅱ、Ⅲ分别改变了实验其他条件;乙苯的浓度随时间的变化如图Ⅰ所示.

①实验Ⅰ乙苯在0~50 min内的反应速率为0.012mol/(L•min).
②实验Ⅱ可能改变条件的是加催化剂.
③图Ⅱ是实验Ⅰ中苯乙烯体积分数V%随时间t的变化曲线,请在图Ⅱ中补画实验Ⅲ中苯乙烯体积分数V%随时间t的变化曲线.
(3)若实验Ⅰ中将乙苯的起始浓度改为1.2 mol/L,保持其他条件不变,乙苯的转化率将减小(填“增大”“减小”或“不变”),计算此时平衡常数为0.225.
(2)Ⅱ.利用乙苯的脱氢反应制苯乙烯.

达到平衡后改变反应条件,图(Ⅲ)中曲线变化不正确的是B.

查看答案和解析>>

科目: 来源: 题型:实验题

14.【化学-选修2化学与技术】
许多含碳、氢物质是重要的化工原料.
(1)某新型储氢合金(化学式为Mg17Al12)的储氢原理为Mg17Al12+17H2═17MgH2+12Al,此变化中还原产物是MgH2(填化学式).
(2)草酸的钙盐、钡盐、镁盐难溶于水.已知C2O3是无色无味气体,可溶于水生成草酸(H2C2O4),写出它溶于足量Ba(OH)2溶液发生反应的化学方程式C2O3+Ba(OH)2=BaC2O4↓+H2O.
(3)已知:几个热化学方程式如下:
①H2(g)+$\frac{1}{2}$O2(g)═H2O(g)△H1=-198kJ•mol-1
②CO(g)+$\frac{1}{2}$O2(g)═CO2(g)△H2
③CH4(g)+2O2(g)═CO2(g)+2H2O(g)△H3=-846.3kJ•mol-1
化学键C≡OO═OC═O(CO2中)
键能(kJ•mol-1958.5497745
写出甲烷与水蒸气在高温下制备合成气(CO,H2)的热化学方程式CH4(g)+H2O(g)?CO(g)+3H2(g)△H=30.7KJ/mol.
(4)向2L恒容密闭容器中充入3mol CH4(g)、4mol H2O(g),发生反应制备CO、H2,测得温度为t℃时,容器内H2的物质的量浓度(mol•L-1)随时间的变化如图中II曲线所示.图中I、III分别表示相对于II仅改变反应条件后,c(H2)随时间的变化.
①若曲线I仅代表改变一种条件后的情况,则改变的条件可能是升温;a、b两点用CO浓度变化表示的净反应速率关系为a<b;
②曲线II对应反应的平衡常数K为54.该温度下,若将等物质的量浓度的CH4(g)、H2O(g)、CO(g)、H2(g)混合充入该容器中,则开始进行方向是无法确定(填:向左、向右、平衡或无法确定).
③曲线III相对于曲线II改变的条件是B.
A.降低温度     B.使用催化剂、降低温度    C.加压.

查看答案和解析>>

科目: 来源: 题型:实验题

13.在容积为1.00L的容器中,通入一定量的N2O4,发生反应N2O4(g)?2NO2(g),随温度升高,混合气体的颜色变深.回答下列问题:
(1)反应的△H大于0(填“大于”或“小于”);100℃时,体系中各物质浓度随时间变化如图所示.在0~60s时段,反应速率v(N2O4)为0.0010mol•L-1•s-1;反应的平衡常数K1为0.36mol/L.
(2)100℃时达平衡后,改变反应温度为T,c(N2O4)以0.0020mol•L-1•s-1的平均速率降低,经10s又达到平衡.
①T大于100℃(填“大于”或“小于”),判断理由是c(N2O4)降低平衡正向移动,正反应为吸热反应,故温度升高.
②列式计算温度T时反应的平衡常数K2:1.28mol/L.
(3)温度T时反应达平衡后,将反应容器的容积减少一半,平衡向逆反应(填“正反应”或“逆反应”)方向移动,判断理由是增大压强平衡向气体体积减小即逆反应方向移动.

查看答案和解析>>

科目: 来源: 题型:选择题

12.在2L的密闭容器中发生反应xA(g)+yB(g)?zC(g).图甲表示200℃时容器中A、B、C物质的量随时间的变化,图乙表示不同温度下平衡时C的体积分数随起始n(A):n(B)的变化关系.则下列结论正确的是(  )
A.200℃时,该反应的平衡常数为25
B.200℃时,反应从开始到平衡的平均速率v(B)=0.04 mol•L-1•min-1
C.200℃时,原平衡中再加入0.4molC,则B的物质的量分数大于25%
D.由图乙可知,反应xA(g)+yB(g)?zC(g)的△H<0,且△S<0

查看答案和解析>>

同步练习册答案