精英家教网 > 高中数学 > 题目详情
已知定义在[1,+∞)上的函数f(x)=
4 -|8x-12|, 1≤x≤2
1
2
f(
x
2
), x>2
,则(  )
A、函数f(x)的值域为[1,4]
B、关于x的方程f(x)-
1
2n
=0(n∈N*)有2n+4个不相等的实数根
C、当x∈[2,4]时,函数f(x)的图象与x轴围成的面积为2
D、存在实数x0,使得不等式x0f(x0)>6成立
分析:由函数的解析式作出函数的图象,利用数形结合分别进行判断即可.
解答:解:作出函数f(x)的图象如图:精英家教网
A.则当x=1时,f(1)=0,∴函数的值域为[0,4],故A错误.
B.当n=1时,由f(x)-
1
2n
=0得f(x)=
1
2

∵f(12)=
1
2
f(6)=
1
2
,则f(x)=
1
2
有7个不同的根,故B错误.
C.当x∈[1,2]时,函数f(x)的图象与x轴围成的图形的面积为S,则S=
1
2
×1×4
=2,故C正确;
D.由xf(x)>6得f(x)>
6
x
,画出函数y=
6
x
的图象,可知y=
6
x
与函数y=f(x)有交点,
如x=
3
2
,3,6等,因此不存在x0,使得不等式即x0f(x0)>6成立,故D错误.
综上可知:C正确.
故选:C
点评:本题主要考查函数图象和性质的判断,利用数形结合是解决本题的关键,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知定义在[-1,1]上的函数y=f(x)的值域为[-2,0],则函数y=f(cos2x)的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,4]上的函数f(x)=x2-2bx+
b4
(b≥1),
( I)求f(x)的最小值g(b);
( II)求g(b)的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,8]上的函数 f(x)=
4-8|x-
3
2
|  1≤x≤2
1
2
f(
x
2
)  2<x≤8
则下列结论中,错误的是(  )
A、f(6)=1
B、函数f(x)的值域为[0,4]
C、将函数f(x)的极值由大到小排列得到数列{an},n∈N*,则{an}为等比数列
D、对任意的x∈[1,8],不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,+∞)上的函数f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的图形面积为S,则S=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[-1,1]上的奇函数f(x),当x∈(0,1]时,f(x)=
2x
4x+1

(Ⅰ)试用函数单调性定义证明:f(x)在(0,1]上是减函数;
(Ⅱ)若a>
1
3
,f(a)+f(1-3a)>0,求实数a的取值范围;
(Ⅲ)要使方程f(x)=x+b在[-1,1]上恒有实数解,求实数b的取值范围.

查看答案和解析>>

同步练习册答案