精英家教网 > 高中数学 > 题目详情

【题目】[2019·潍坊期末]某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了100件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:

分组

频数

频率

25.05~25.15

2

0.02

25.15~25.25

25.25~25.35

18

25.35~25.45

25.45~25.55

25.55~25.65

10

0.1

25.65~25.75

3

0.03

合计

100

1

(1)求

(2)根据质量标准规定:钢管内径尺寸大于等于25.75或小于25.15为不合格,钢管尺寸在为合格等级,钢管尺寸在为优秀等级,钢管的检测费用为0.5元/根.

(i)若从的5件样品中随机抽取2根,求至少有一根钢管为合格的概率;

(ii)若这批钢管共有2000根,把样本的频率作为这批钢管的频率,有两种销售方案:

①对该批剩余钢管不再进行检测,所有钢管均以45元/根售出;

②对该批剩余钢管一一进行检测,不合格产品不销售,合格等级的钢管50元/根,优等钢管60元/根.

请你为该企业选择最好的销售方案,并说明理由.

【答案】(1)(2)(i)(ii)选第②种方案

【解析】

(1)结合频率直方图的意义,计算b,结合概率之和为1,得到a,即可。(2)(i)利用古典概率计算公式,即可。(ii)分别计算出第一种法案和第二种方案的收益,比较,即可。

(1)由题意知:

所以

所以.

(2)(i)记内径尺寸在的钢管为,内径尺寸在的钢管为

共有,, 种情况,

其中,满足条件的共有种情况,所以所求概率为.

(ii)由题意,不合格钢管的概率为,合格钢管的概率为,优秀钢管的概率为,不合格钢管根,合格钢管有根,优秀等级钢管有根.

若依第①种方案,则元;

若依第②种方案,则

,故选第②种方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,任取两个不相等的正数,总有,对于任意的,总有,若有两个不同的零点,则正实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线方程为,点为坐标原点,不过点的直线与抛物线交于不同的两点

(1)如果直线过点,求证:

(2)如果,证明直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:

特征量

1

2

3

4

5

6

7

98

88

96

91

90

92

96

9.9

8.6

9.5

9.0

9.1

9.2

9.8

(1)求关于的线性回归方程(计算结果精确到0.01);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1)

附:回归直线方程中斜率和截距的最小二乘法估计公式分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ,其中

(1)试讨论函数 的单调性;

(2)已知当 (其中 是自然对数的底数)时,在 上至少存在一点 ,使 成立,求 的取值范围;

(3)求证:当 时,对任意 ,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)g(x)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),f(﹣ )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数图像上两个不同的交点,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为等,小于80分者为等.

(1)求女生成绩的中位数及男生成绩的平均数;

(2)如果用分层抽样的方法从等和等中共抽取5人组成“创新团队”,则从等和等中分别抽几人?

(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是等的概率.

查看答案和解析>>

同步练习册答案