精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,若a=2,b=3,则边长c的取值范围是
5
13
5
13
分析:要使的三角形是一个锐角三角形,只要使得可以作为最大边的边长的平方小于另外两边的平方和,解出不等式组,根据边长是一个正值求出结果.
解答:解:∵a=2,b=3
要使△ABC是一个锐角三角形
∴要满足32+22>c2,22+c2>32
∴5<c2<13
5
<c<
13

故答案为:(
5
13
)
点评:本题主要考查了余弦定理的运用.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,若lg (1+sinA)=m,且lg
1
1-sinA
=n,则lgcosA等于(  )
A、
1
2
(m-n)
B、m-n
C、
1
2
(m+
1
n
D、m+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R

(I)化简函数f(x)的解析式,并求函数f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,若f(A)=1,
AB
AC
=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,若C=2B,则
c
b
的范围(  )
A、(
2
3
)
B、(
3
,2)
C、(0,2)
D、(
2
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点为P(
π
12
,2)
,与P最近的一个最低点的坐标为(
12
,-2)

(1)求函数f(x)的解析式;
(2)设a为常数,判断方程f(x)=a在区间[0,
π
2
]
上的解的个数;
(3)在锐角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案