精英家教网 > 高中数学 > 题目详情
17.(1)已知抛物线y2=2px(p>0)的焦点在直线2x-y-4=0上,求p的值;
(2)已知双曲线的渐近线方程为$y=±\frac{3}{4}x$,准线方程为$x=±\frac{16}{5}$,求双曲线的标准方程.

分析 (1)利用抛物线的标准方程及其性质即可得出;
(2)利用双曲线的标准方程及其性质即可得出.

解答 解:(1)抛物线y2=2px(p>0)的焦点坐标为(p,0),
又焦点在直线2x-y-4=0上,
∴2p-0-4=0,
解得p=2,
(2)由题意知双曲线标准方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a,b>0).
∴$\frac{b}{a}$=$\frac{3}{4}$,$\frac{{a}^{2}}{c}$=$\frac{16}{5}$,
又c2=a2+b2,解得a=4,b=3,
∴所求双曲线标准方程为$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

点评 本题考查了抛物线与双曲线的标准方程及其性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.命题“若x>1,则x2>1”的逆否命题是若x2≤1,则x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的焦点在x轴上,焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线x-2y+1=0平行,则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面ABCD中,AB⊥平面ADE,CD⊥平面ADE,△ADE是等边三角形,AD=DC=2AB=2,F,G分别为AD,DE的中点.
(Ⅰ)求证:EF⊥平面ABCD;
(Ⅱ)求四棱锥E-ABCD的体积;
(Ⅲ)判断直线AG与平面BCE的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=e2x+x2,则f'(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知p:x=1,q:x3-2x+1=0,则p是q的充分不必要条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选出适当的一种填空).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.运动员小王在一个如图所示的半圆形水域(O为圆心,AB是半圆的直径)进行体育训练,小王先从点A出发,沿着线段AP游泳至半圆上某点P处,再从点P沿着弧PB跑步至点B处,最后沿着线段BA骑自行车回到点A处,本次训练结束.已知OA=1500m,小王游泳、跑步、骑自行车的平均速度分别为2m/s,4m/s,10m/s,设∠PAO=θrad.
(1)若$θ=\frac{π}{3}$,求弧PB的长度;
(2)试将小王本次训练的时间t表示为θ的函数t(θ),并写出θ的范围;
(3)请判断小王本次训练时间能否超过40分钟,并说明理由.
(参考公式:弧长l=rα,其中r为扇形半径,α为扇形圆心角.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈$\frac{1}{36}$L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈$\frac{7}{264}$L2h相当于将圆锥体积公式中的圆周率π近似取为(  )
A.$\frac{22}{7}$B.$\frac{25}{8}$C.$\frac{23}{7}$D.$\frac{157}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在直角坐标系中,曲线的C参数方程为$\left\{\begin{array}{l}{x=1+2cosφ}\\{y=1+2sinφ}\end{array}\right.$(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{4}{cosθ-sinθ}$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案