精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)若,求函数上的最小值;

2)求函数的极值点.

【答案】11;(2)见解析

【解析】

1)求出函数的导数,判断函数在上的单调性,进而求出上的最小值;

2)求出函数的导数,构造函数,再通过讨论的范围,求出函数的单调性,从而确定的极值点.

1)当时,

时,

所以上是增函数,

时,取得最小值

所以上的最小值为1.

2,则

①当时,上恒成立,此时

所以上单调递增,

此时,函数没有极值点;

②当时,

,即时,

上恒成立,

此时

所以上单调递增,

此时,函数没有极值点;

,即时,

,则

时,,即

时,

,即

所以当时,是函数的极大值点;是函数的极小值点.

综上,当时,函数没有极值点;

时,是函数的极大值点;

是函数的极小值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,DAC的中点,四边形BDEF是菱形,平面平面ABC

若点M是线段BF的中点,证明:平面AMC

求平面AEF与平面BCF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式的解集为

(1)求a,b的值.

(2)当时,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)记函数的极值点为,若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右顶点和上顶点分别为,斜率为的直线与椭圆交于两点(点在第一象限).

(Ⅰ)求证:直线的斜率之和为定值;

(Ⅱ)求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数内只取到一个最大值和一个最小值,且当时,;当时,.

(1)求函数的解析式.

(2)求函数的单调递增区间.

(3)是否存在实数,满足不等式?若存在,求出的范围(或值);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是实数。设, 为该函数图象上的两点,且,若函数的图象在点处的切线重合,则的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:

小组

人数

12

9

6

9

1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;

2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是异面直线,给出下列结论:

①一定存在平面,使直线平面,直线平面

②一定存在平面,使直线平面,直线平面

③一定存在无数个平面,使直线与平面交于一个定点,且直线平面

则所有正确结论的序号为(

A.①②B.C.②③D.

查看答案和解析>>

同步练习册答案