精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数fx),且对任意实数x1x2x1x2时,都有(fx1)﹣fx2))x1x2)<0.若存在实数x[33],使得不等式fax+fa2x)>0成立,则实数a的取值范围是(   )

A.(﹣32B.[32]C.(﹣21D.[21]

【答案】A

【解析】

利用奇函数性质不等式变为,条件(fx1)﹣fx2))x1x2)<0说明函数是减函数,从而得,即,只要小于的最大值即可.

∵对任意实数x1x2x1x2时,都有(fx1)﹣fx2))x1x2)<0.∴函数是减函数,

是奇函数,∴不等式fax+fa2x)>0可变为,即,∴,即

∵存在实数x[33],使得不等式fax+fa2x)>0成立,

x[33]时,的最大值是6,∴,解是

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.

(1)求椭圆的方程;

(2)设分别为椭圆的左,右焦点,过作直线 (与轴不重合)交椭圆于 两点,线段的中点为,记直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面积为4,b=4,求△ABC的周长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”在该问题中的1864人全部派遣到位需要的天数为( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如下表:

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的列联表,并判断是否有的把握认为“使用手机支付”与人的年龄有关;

(2)若从年龄在内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为.

①求随机变量的分布列;

②求随机变量的数学期望.

参考数据如下:

0.05

0.010

0.001

3.841

6.635

10.828

参考格式:,其中

查看答案和解析>>

同步练习册答案