精英家教网 > 高中数学 > 题目详情

【题目】2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图3是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

表1:设备改造后样本的频数分布表

(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

(2)根据图3和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价240元;质量指标值落在内的定为二等品,每件售价180元;其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1) 有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关(2)见解析

【解析】试题分析:(1)根据直观图以及表格中所给数据,可完成列联表;根据列联表,利用公式可得,与临界值比较可得结果;(2)根据图和表可知,利用古典概型概率公式可得设备改造前产品为合格品的概率约为,设备改造后产品为合格品的概率约为,比较合格率的大小即可得结果;(3)随机变量的取值为: ,根据独立事件的概率公式计算出各随机变量对应的概率,可得分布列,利用期望公式可得结果.

试题解析:(1)根据图3和表1得到列联表:

设备改造前

设备改造后

合计

合格品

172

192

364

不合格品

28

8

36

合计

200

200

400

列联表中的数据代入公式计算得:

.

∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关.

(2)根据图和表可知,设备改造前产品为合格品的概率约为,设备改造后产品为合格品的概率约为;显然设备改造后产品合格率更高,因此,设备改造后性能更优.

(3)由表1知:

一等品的频率为,即从所有产品中随机抽到一件一等品的概率为

二等品的频率为,即从所有产品中随机抽到一件二等品的概率为

三等品的频率为,即从所有产品中随机抽到一件三等品的概率为.

由已知得:随机变量的取值为: .

.

∴随机变量的分布列为:

240

300

360

420

480

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,,10的因数有1,2,5,10,,那么______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

求实数a的值;

若关于x的方程上恰有两个不相等的实数根,求实数b的取值范围;

证明:参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是的面积为,且.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则方程恰有2个不同的实根,实数取值范围__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系x-O-y中,已知曲线E:(t为参数)

(1)在极坐标系O-x中,若A、B、C为E上按逆时针排列的三个点,△ABC为正三角形,其中A点的极角θ=,求B、C两点的极坐标;

(2)在直角坐标系x-O-y中,已知动点P,Q都在曲线E上,对应参数分别为t=α与t=2α (0<α<2π),M为PQ的中点,求 |MO| 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于其定义域内的任何一个自变量,都有函数值,则称函数上封闭.

1)若下列函数:的定义域为,试判断其中哪些在上封闭,并说明理由.

2)若函数的定义域为,是否存在实数,使得在其定义域上封闭?若存在,求出所有的值,并给出证明;若不存在,请说明理由.

3)已知函数在其定义域上封闭,且单调递增,若,求证:.

查看答案和解析>>

同步练习册答案