精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)的直线L与椭圆C相交于A、B两点.
(1).求椭圆C的方程;
(2).求的取值范围.
(1);(2).
(1)容易建立两个关于a,b的方程,椭圆C的方程直接可求.
(2)利用向量的坐标表示把表示成关于k的式子,然后利用函数求值域的方法确定其范围即可.
解:(1)由题意知,∴,即
,∴
故椭圆的方程为                                     5分
(2)由题意知直线AB的斜率存在,设直线PB的方程为
得:              7分
得:               9分
A(x1y1),B (x2y2),则  ① 10分


,∴,-------------------------------12分

的取值范围是.-------------------  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆: 过点(0,4),离心率为
(1)求的方程;
(2)求过点(3,0)且斜率为的直线被所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆离心率为,且经过点,过椭圆的左焦点作直线交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。 
(1)求椭圆E的方程
(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率
(3)是否存在直线,使得四边形OAPB为矩形?若存在,求出直线的方程。若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在x轴上,离心率e=,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程。(O为原点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C: 过点(0,4),(5,0).
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的不垂直于对称轴的弦,的中点,为坐标原点,则____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆>0)的两个焦点,为椭圆上一点,且.若的面积为9,则="____________."

查看答案和解析>>

同步练习册答案