15£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=ax2-x£¨a¡Ù0£©£®
£¨1£©Èôº¯Êýy=f£¨x£©Óëy=g£¨x£©µÄͼÏóÔÚ¹«¹²µãP´¦ÓÐÏàͬµÄÇÐÏߣ¬ÇóʵÊýaµÄÖµ²¢ÇóµãPµÄ×ø±ê£»
£¨2£©Èôº¯Êýy=f£¨x£©Óëy=g£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ½»µãM¡¢N£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÏ߶ÎMNµÄÖеã×÷xÖáµÄ´¹Ïß·Ö±ðÓëy=f£¨x£©µÄͼÏóºÍy=g£¨x£©µÄͼÏó½»ÓÚS¡¢Tµã£¬ÒÔSΪÇеã×÷y=f£¨x£©µÄÇÐÏßl1£¬ÒÔTΪÇеã×÷y=g£¨x£©µÄÇÐÏßl2£¬ÊÇ·ñ´æÔÚʵÊýaʹµÃl1¡Îl2£¬Èç¹û´æÔÚ£¬Çó³öaµÄÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³ö¹«¹²µã£¬ÀûÓÃÇÐÏßбÂÊÏàµÈÁгö·½³Ì£¬Çó½âµÃ³öaµÄÖµ£»
£¨2£©¸ù¾Ý£¨1£©Öª£¬µ±a=1ʱ£¬Á½ÌõÇúÏßÇÐÓÚµãP£¨1£¬0£©£¬ÀûÓÃÊýÐνáºÏµÄ·½·¨£¬Í¨¹ýƽÒÆͼÏ󣬵óöaµÄ·¶Î§£»
£¨3£©²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2ÔòMNÖеãµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£¬ÀûÓÃƽÐУ¬Ð±ÂÊÏàµÈµÃ³ö
£¬$\frac{2}{{x}_{1}+{x}_{2}}$=a£¨x1+x2£©-1£¬ÓÐlnx1=ax12-x1£¬lnx2=ax22-x2£¬ÁªÁ¢£¬ÀûÓù¹Ô캯Êýh£¨t£©=lnt-$\frac{2£¨t-1£©}{t+1}$£¬¡Ô
ÅжÏÊÇ·ñ´æÔÚÁãµã¼´¿É£®

½â´ð ½â£º£¨1£©É躯Êýy=f£¨x£©Óëy=g£¨x£©µÄͼÏóµÄ¹«¹²µãP£¨x0£¬y0£©£¬ÔòÓÐlnx0=ax02-x0£¬¢Ù
ÓÖÔÚµãPÓй²Í¬µÄÇÐÏߣ¬
¡àf'£¨x0£©=g'£¨x0£©£¬
¡à$\frac{1}{{x}_{0}}$=2ax0-1£¬
¡àa=$\frac{1+{x}_{0}}{2{{x}_{0}}^{2}}$£¬
´úÈë¢Ù£¬µÃlnx0=$\frac{1}{2}$-$\frac{1}{2}$x0£®
Éèh£¨x£©=lnx-$\frac{1}{2}$$+\frac{1}{2}$x£¬
¡àh'£¨x£©=$\frac{1}{x}$$+\frac{1}{2}$£¾0£¬£¨x£¾0£©£¬
ËùÒÔº¯Êýh£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬¹Ê×î¶àÓÐ1¸öÁãµã£¬¹Û²ìµÃx0=1ÊÇÁãµã£®
¹ÊÓÐa=1£¬´ËʱP£¨1£¬0£©£¬£®
£¨2£©¸ù¾Ý£¨1£©Öª£¬µ±a=1ʱ£¬Á½ÌõÇúÏßÇÐÓÚµãP£¨1£¬0£©£¬
£¬´Ëʱ±ä»¯µÄy=g£¨x£©µÄ¶Ô³ÆÖáÊÇx=$\frac{1}{2}$£¬y=f£¨x£©¶øÊǹ̶¨²»¶¯µÄ£¬Èç¹û¼ÌÐøÈöԳÆÖáÏòÓÒÒƶ¯£¬¼´x=$\frac{1}{2a}$$£¾\frac{1}{2}$£¬µÃa£¼1£®
Á½ÌõÇúÏßÓÐÁ½¸ö²»Í¬µÄ½»µã£¬µ±a£¼0ʱ£¬¿ª¿ÚÏòÏ£¬Ö»ÓÐÒ»¸ö½»µã£¬ÏÔÈ»²»ºÏÌâÒ⣮
×ÛÉϿɵã¬ÓÐ0£¼a£¼1£®
£¨3£©²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2ÔòMNÖеãµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£¬
ÒÔSΪÇеãµÄÇÐÏßl1µÄбÂÊΪ$\frac{2}{{x}_{1}+{x}_{2}}$£¬
ÒÔTΪÇеãµÄÇÐÏßl2µÄбÂÊΪa£¨x1+x2£©-1£¬
Èç¹û´æÔÚaʹµÃ$\frac{2}{{x}_{1}+{x}_{2}}$=a£¨x1+x2£©-1£¬¢Ú
¶øÇÒÓÐlnx1=ax12-x1£¬lnx2=ax22-x2£¬
Èç¹û½«¢ÚµÄÁ½±ßͬʱ³ËÒÔx1-x2£¬µÃ$\frac{2£¨{x}_{1}-{x}_{2}£©}{{x}_{1}+{x}_{2}}$=a£¨x12+x22£©-£¨x1-x2£©
¼´$\frac{2£¨\frac{{x}_{1}}{{x}_{2}}-1£©}{\frac{{x}_{1}}{{x}_{2}}+1}$=ln$\frac{{x}_{1}}{{x}_{2}}$£¬Áît=$\frac{{x}_{1}}{{x}_{2}}$£¨t£¾0£©£¬

ÔòÓÐlnt-$\frac{2£¨t-1£©}{t+1}$=0£¬
Áîh£¨t£©=lnt-$\frac{2£¨t-1£©}{t+1}$£¬
¡àh'£¨t£©£¾0£¬
¡àº¯Êýh£¨t£©ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬¹Êh£¨t£©£¾h£¨1£©=0£¬
ËùÒÔ²»´æÔÚʵÊýaʹµÃl1¡Îl2£®

µãÆÀ ¿¼²éÁ˵¼ÊýÇóбÂÊ£¬Êýѧ½áºÏµÄ˼ÏëºÍÀûÓÃÌõ¼þ£¬Í¨¹ýµ¼ÊýÅжϺ¯ÊýµÄÁãµãÊÇ·ñ´æÔÚ£¬½â¾öʵ¼ÊÎÊÌ⣬˼·²»ÈÝÒ×Ïëµ½£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¾­¹ýÔ­µãµÄÖ±ÏßlÓëÔ²x2+y2-6x-4y+9=0ÏཻÓÚÁ½¸ö²»Í¬µãA£¬B£¬ÇóÏ߶ÎABµÄÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªf£¨x£©ÔÚx0´¦¿Éµ¼£¬Ôò$\underset{lim}{h¡ú0}\frac{f£¨{x}_{0}+h£©-f£¨{x}_{0}£©}{2h}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}f¡ä£¨{x}_{0}£©$B£®f¡ä£¨x0£©C£®2f¡ä£¨x0£©D£®4f¡ä£¨x0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Éèa£¾0ÇÒa¡Ù1£¬º¯Êýf£¨x£©=loga$\frac{x-3}{x+3}$£¬g£¨x£©=1+loga£¨x-1£©£¬Á½º¯ÊýµÄ¶¨ÒåÓò·Ö±ðΪ¼¯ºÏA¡¢B£¬Èô½«A¡ÉB¼Ç×÷Çø¼äD£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©ÔÚDÉϵĵ¥µ÷ÐÔ£»
£¨2£©Èô[m£¬n]⊆D£¬º¯Êýf£¨x£©ÔÚ[m£¬n]ÉϵÄÖµÓòÇ¡ºÃΪ[g£¨n£©£¬g£¨m£©]£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªµãpΪԲF1£ºx2+£¨y-$\sqrt{2}$£©2=12ÉÏÈÎÒ»µã£¬F2£¨0£¬-$\sqrt{2}$£©£¬ÇÒÏ߶ÎPF2´¹Ö±Æ½·ÖÏß½»Ï߶ÎPF1ÓÚµãM£¬
£¨1£©ÇóµãMµÄ¹ì¼£ÇúÏßCµÄ·½³Ì£»
£¨2£©Ö±Ïßl¹ýµãF1ÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Èô´æÔÚÇó³öËùÓÐÂú×ãÌõ¼þµÄµãQ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¼ÆË㣺$\underset{lim}{n¡ú¡Þ}$$\frac{2n}{4n+1}$=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬S6=9S3£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=1+log2an£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¶¯Ô²Ô²ÐÄMÓëyÖáÏàÇУ¬²¢ÇÒÓëÔ²C£ºx2+y2-2x=0ÍâÇУ®
£¨1£©Çó¶¯Ô²Ô²ÐÄMµÄ¹ì¼£·½³Ì£»
£¨2£©¹ý¶¥µãH£¨-2£¬-1£©×öбÂÊΪkµÄÖ±ÏßÓëMµÄ¹ì¼£½»ÓÚ²»Í¬Á½µãA¡¢B£¬ÔÙ¹ý¶¨µãS£¨1£¬0£©×öбÂÊΪkµÄÖ±ÏßÓëMµÄ¹ì¼£½»ÓÚ²»Í¬Á½µãC£¬D£¬²¢ÇÒA£¬B£¬C£¬DÔÚyÖáµÄͬһ²à£¬ÊÔ̽Çó$\frac{HA•HB}{CD}$ÊÇ·ñΪ¶¨Öµ£¬ÇëÇó³ö£®Èô²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¹ØÓÚº¯Êýf£¨x£©=$lg\frac{{{x^2}+1}}{|x|}$£¨x¡Ù0£©£¬ÓÐÏÂÁÐÃüÌ⣺
¢Ùf£¨x£©µÄ×îСֵÊÇlg2£»
¢ÚÆäͼÏó¹ØÓÚyÖá¶Ô³Æ£»
¢Ûµ±x£¾0ʱ£¬f£¨x£©ÊÇÔöº¯Êý£»µ±x£¼0ʱ£¬f£¨x£©ÊǼõº¯Êý£»
¢Üf£¨x£©ÔÚÇø¼ä£¨-1£¬0£©ºÍ£¨1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸