精英家教网 > 高中数学 > 题目详情
8.直线x-y-1=0的倾斜角与其在y轴上的截距分别是(  )
A.135°,1B.45°,-1C.45°,1D.135°,-1

分析 根据题意,将直线的方程变形为斜截式方程,可得直线的斜率与其在y轴上的截距,利用倾斜角与斜率的关系,可得其倾斜角,即可得答案.

解答 解:根据题意,直线的方程为x-y-1=0,变形可得y=x-1,
则其斜率k=1,倾斜角θ=45°,
在y轴上的截距为-1;
故选:B.

点评 本题考查直线的一般式方程的应用,要根据题意,将直线的方程变形为斜截式方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(c,0)作x轴的垂线,与椭圆C在第一象限内交于点A,过A作直线x=$\frac{{a}^{2}}{c}$的垂线,垂足为B,|AF|=$\frac{\sqrt{3}}{3}$,|AB|=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为圆E:x2+y2=4上任意一点,过点P作椭圆C的两条切线l1、l2,设l1、l2分别交圆E于点M、N,证明:MN为圆E的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD=$\sqrt{2}$.
(1)求证:平面SAD⊥平面SBC;
(2)若BC=2,求点A到平面SBD的距离h的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,4),则log2f($\frac{1}{2}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+ax,若f(f(x))的最小值与f(x)的最小值相等,则a的取值范围是{a|a≥2或a≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=2-x-$\frac{4}{x}$的值域为(-∞,-2]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直线l与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$相交于A,B两点,与圆(x-1)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.(1,$\sqrt{6}$)B.(2,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(1,$\sqrt{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sin(2x+$\frac{π}{12}$)的图象经过平移后所得图象关于点($\frac{π}{12}$,0)中心对称,这个平移变换可以是(  )
A.向左平移$\frac{π}{8}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{8}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,∠BAD=90°,AD∥BC,PA=AB=BC=1,AD=2,E为PD的中点.
(1)求证:CD⊥平面PAC;
(2)求直线EC与平面PAC所成角的正切值.

查看答案和解析>>

同步练习册答案