【题目】为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出如图所示的频率分布直方图,已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在[100,120]之间的学生人数是( )
A.32
B.24
C.18
D.12
【答案】D
【解析】解:∵从左到右各长方形高的比为2:3:5:6:3:1,
∴设从左到右各长方形高的比为2k,3k,5k,6k,3k,k,
由频率分布直方图的性质得:
2k+3k+5k+6k+3k+k=1,解得k=0.05,
∴该班学生数学成绩在[100,120]之间的学生频率为:
3k+k=4k=4×0.05=0.2,
∴该班学生数学成绩在[100,120]之间的学生人数是60×0.2=12(人).
故选:D.
【考点精析】本题主要考查了频率分布直方图的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an}的前n项和为Sn, S3=a4+6,且a1, a4, a13成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.
上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).
(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;
(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (x≠0).
(1)证明函数f(x)为奇函数;
(2)判断函数f(x)在[1,+∞)上的单调性,并说明理由;
(3)若x∈[﹣2,﹣3],求函数的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文科选做)如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是_____。
(理科选做)在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为1,E在CD延长线上,且DE=CD.动点P从点A出发沿正方形ABCD的边按逆进针方向运动一周回到A点,其中 =λ +μ ,则下列命题正确的是 . (填上所有正确命题的序号)
①当点P为AD中点时,λ+μ=1;
②λ+μ的最大值为3;
③若y为给定的正数,则一存在向量 和实数x,使 =x +y .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+α)(A>0,ω>0,﹣ <α< )的最小正周期是π,且当x= 时,f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的图象(要列表);
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com