精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1的棱长为1,点M在AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点的轨迹是(  )
A、圆B、抛物线C、双曲线D、直线
分析:作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得 PR2-PQ2=RQ2=1,又已知PR2-PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.
解答:精英家教网解:如图所示:正方体ABCD-A1B1C1D1  中,作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1,过点Q作QR⊥D1A1
则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,由题意可得 PR2-PQ2=RQ2=1.
又已知 PR2-PM2=1,∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,
故选 B.
点评:本题考查抛物线的定义,求点的轨迹方程的方法,体现了数形结合的数学思想,得到PM=PQ是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案