精英家教网 > 高中数学 > 题目详情

【题目】有下列四个命题:

①已知-1<ab<0,则0.3aa2ab

②若正实数ab满足a+b=1,则ab有最大值

③若正实数ab满足a+b=1,则有最大值

xy∈(0,+∞),x3+y3x2y+xy2

其中真命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由不等式的性质和指数函数的单调性可判断;由基本不等式可判断②③运用作差法和因式分解,可判断

已知﹣1<ab<0,则0.3a>1,1>a2ab>0,即有0.3aa2ab正确;

若正实数ab满足a+b=1,则ab≤(2,有最大值正确;

若正实数ab满足a+b=1,则

有最大值正确;

xy(0,+∞),x3+y3x2yxy2x2xy)﹣y2xy

=(xy2x+y0恒成立,当x=y时,x3+y3=x2y+xy2故不正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:

上一年的
出险次数

0

1

2

3

4

5次以上(含5次)

下一年
保费倍率

85%

100%

125%

150%

175%

200%

连续两年没有出险打7折,连续三年没有出险打6折

有评估机构从以往购买了车险的车辆中随机抽取1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆每年出险次数的概率):

一年中出险次数

0

1

2

3

4

5次以上(含5次)

频数

500

380

100

15

4

1


(1)求某车在两年中出险次数不超过2次的概率;
(2)经验表明新车商业车险保费与购车价格有较强的线性相关关系,估计其回归直线方程为: =120x+1600.(其中x(万元)表示购车价格,y(元)表示商业车险保费).李先生2016 年1月购买一辆价值20万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费,并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax-1(x≥0).其中a>0,a≠1.

(1)若f(x)的图象经过点(,2),求a的值;

(2)求函数y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出S的值是(

A.2
B.
C.﹣
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则函数y=f[fx)]的零点个数为(  )

A. 7 B. 6 C. 5 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}中,a2=1,a2、a4、a8成等比数列.
(1)求数列{an}的通项公式an
(2)设数列{an}的前n项和为Sn , 记bn= .Tn=b1+b2+…+bn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线:, 上一动点, 是焦点, .

Ⅰ)求的取值范围;

Ⅱ)过点的直线相交于两点,求使得面积最小时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).

(1)把y表示成x的函数;

(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

同步练习册答案