精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=(2a-1)x+3在R上为减函数,则有(  )
A.a>$\frac{1}{2}$B.a<$\frac{1}{2}$C.a≥$\frac{1}{2}$D.a≤$\frac{1}{2}$

分析 根据题意,函数f(x)=(2a-1)x+3为一次函数,由于其在R上为减函数,则有2a-1<0,解可得a的范围,即可得答案.

解答 解:根据题意,函数f(x)=(2a-1)x+3在R上为减函数,
则有2a-1<0,解可得a<$\frac{1}{2}$;
故选:B.

点评 本题考查函数单调性的运用,注意灵活运用常见函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.经过P(-2,0)且平行于$\overrightarrow{a}$=(0,3)的直线方程为3x-y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.矩形ABCD与矩形ABEF全等,且平面ABCD⊥平面ABEF,AD=2AB=2,若$\overrightarrow{FM}$=λ$\overrightarrow{FB}$,$\overrightarrow{AN}$=μ$\overrightarrow{AC}$,λ,μ∈R,λ+μ=1,则|$\overrightarrow{MN}$|的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足当∈[2k-1,2k+1)(k∈Z)时f(x)=(x-2k)2,若y=f(x)与g(x)=logax图象上关于y轴对称的点有3对,则a的取值范围是(  )
A.(0,2)B.(1,3)C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从100张卡片(编号1~100)中任取一张卡片,则取出的卡片是7的倍数的概率是(  )
A.$\frac{3}{20}$B.$\frac{13}{100}$C.$\frac{3}{25}$D.$\frac{7}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=|x2-a2|(α>0),动点P(m,n)满足f(m)=f(n),且m<n<0,若动点P(m,n)的轨迹直线x+y+1=0没有公共点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{2}}{2}$,+∞)D.(0,$\frac{1}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中在($\frac{π}{4}$,$\frac{3}{4}$π)上为减函数的是(  )
A.y=-tanxB.y=cos(2x-$\frac{π}{2}$)C.y=sin2x+cos2xD.y=2cos2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点P(a2-1,2a+1)在直线x-2y-2=0上,则a=-1或5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线的方程为4x-3y+9=0.

查看答案和解析>>

同步练习册答案