精英家教网 > 高中数学 > 题目详情
15.若sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,α∈(0,π),则sinα=$\frac{4}{5}$.

分析 由已知利用诱导公式可求cosα的值,结合角α的范围,利用同角三角函数基本关系式可求sinα的值.

解答 解:∵sin($\frac{π}{2}$+α)=cosα=-$\frac{3}{5}$,α∈(0,π),
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-(-\frac{3}{5})^{2}}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg(3-4x+x2)的定义域为M.
(1)求f(x)的单调区间及值域;
(2)当x∈M时,关于x的方程1og2(3-x)-1og2(1+x)=b(b∈R)有实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=3x-y的最大值为(  )
A.-6B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\vec a$=(sinx,cosx),$\vec b$=(sinx,sinx),函数f(x)=$\vec a•\vec b$.
( I)求f(x)的对称轴方程;
( II)求使f(x)≥1成立的x的取值集合;
( III) 若对任意实数$x∈[{\frac{π}{6},\frac{π}{3}}]$,不等式f(x)-m<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.阅读如图所示的程序框图,若输入n=2017,则输出的S值是(  )
A.$\frac{2016}{4033}$B.$\frac{2017}{4035}$C.$\frac{4032}{4033}$D.$\frac{4034}{4035}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有(  )个.
A.192B.228C.300D.180

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式-x2-2x+3≥0的解集为(  )
A.{x|-1≤x≤3}B.{x|x≥3或x≤-1}C.{x|-3≤x≤1}D.{x|x≤-3或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N+).
(Ⅰ)求a2,a3,a4的值,猜想数列{an}的通项公式;
(Ⅱ)运用(Ⅰ)中的猜想,写出用三段论证明数列{$\frac{1}{{a}_{n}}$}是等差数列时的大前提、小前提和结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案